FREE FERMIONS REVISITED

ANTUN MILAS, MICHAEL PENN

ABSTRACT. Free fermion vertex superalgebras are discussed from the point of view of Urod vertex
algebras [3, 1]. We present all finite decompositions of the 3-fermion vertex algebra via Virasoro
and N = 1 superconformal vertex algebras. We also present decompositions of higher rank
fermion algebras using affine W-algebras, and a conjecture on the existence of the ”square root”
of the (2n + 1) fermion algebra.

1. INTRODUCTION

The free fermion vertex algebra is, in a suitable sense, the smallest rational vertex (super)algebra,
holding a pivotal role within the theory of vertex algebras. For some basic facts about free fermions,
charged free fermions, and the celebrated Boson-Fermion correspondence see [7, 10]. To introduce
this algebra, we first define the fermionic superalgebra with odd generators ¢,, n € Z + %, obeying
anti-commutation relations:

[Spnm @n]-ﬁ- = 5m+n,0-

Then the free fermion vertex algebra (also known as ’fermionic Fock space’) is given by F = A*(V)
where A*(V') denotes the exterior algebra on V' = Span{y_; /2, 0_3/2,...}. It is well known that
F can be equipped with a unique conformal vertex algebra structure of central charge i with

2
conformal vector wr = %cp_g/gcp_lml (throughout, 1 denotes the vacuum vector). Under this
conformal structure, the fermionic generator ¢ := ¢_;,51 has degree % The space F further

decomposes as a Virasoro algebra module (notation defined below) [10]:

1 11
roo(Lo)or(Ll)

Clearly, the character ' of F with respect to L(0) := (wF)q) is given by

ch[F](q) = (=4%; @)oo,
where we use g-Pochammer symbol notation (a;q), := [, (1 — ag"™1).

More generally, we consider the tensor product of n copies of F, F®" := F®---® F, of cen-
tral charge ¢ = § with the character ch[F ®"1(q) = (—q;¢"/*)",. These vertex superalgebras are
important as they carry actions of the level one orthogonal affine Lie algebras [7], (see also [14]).
Moreover, modules of L(%7 0)®" are building blocks of holomorphic vertex algebras, including the
Moonshine Module. Observe that with ¢ = 7, the character q~¢/?*ch[F®"] is a modular form of

weight zero (notice the n-th power of Weber’s modular functions f(¢) = ¢~ /**(—¢'/?; ¢)s)).

IHere the character is defined as Tr ¢~ where L(0) is the degree operator.
1
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In this paper we are interested in a new grading on F®", specifically pertaining to integral shifts
of fermionic modes, such that for n > 1:
oo

Chnew[ 2"+1 H H m i_1/2) — q_ i é H (1 + qm—l/2)2n-§—17

i=—nm2>1 m>1

and for n > 2,

om n o0 ) w l o0
hoewl 7 (@) = (0% 0 [ [T +a V) =g 505 [T+ 122
i——(n—1) m>1 m>1

Observe that the conformal weights (or degrees) of generating fields receive both positive and
negative integral shifts. If we try to turn these modified characters into modular functions using
the standard procedure, ¢—¢/ 24ch[-], a new central charge arises and we require

i

"2 241 1
cf®2n+1_—24< Pt on 4 1)dn® +4n— 1),

e 2 48 2
=1
n—1 .9
) 2n
Cr®2n = —24 (i_l 5 — 48) (1 — 6n + 4n )

As we shall see in Section 8, these are precisely Urod central charges of the ¢ = 1 level simple affine
vertex algebra of s0(2n + 1) ? and so(2n), respectively. The Urod vertex algebra of sly with £ = 1
was introduced by Bershtein, Feigin, and Litvinov in [4] and studied in full generality for all simple
Lie algebras in [3]; see also [0] for their relevance to gluing operations on 4-manifolds and CFT.

The objective of this paper is to examine various decompositions of F®" featuring a distinctive
grading as above, in terms of affine W-algebras with a specific focus on the n = 3 case.

Our paper is structured as follows. In Section 2, we compile known facts concerning Lie algebras,
vertex algebras, and their representations pertinent to our study. In Section 3, we study a family of
(super)conformal structures on the 3-fermion vertex algebra F ®3, denoted by Un—1; see formulas
(5),(6). Then we obtain all finite decompositions of Un—1 in terms of (S)Vir x (S)Vir-modules (see
Proposition 3.2, Theorem 3.3, etc.). Additionally, we discuss the 2-fermion model; see Proposition
3.6. In Section 4, which is mostly a consequence of results from [3] and [12], we give a decomposition
of L(cppr,0) @ Un=1 vertex algebra in Theorem 4.4. Furthermore, in Section 4.5 we furnish several
decompositions for L,s(cp . 0) @ Un=1 for special central charges. Section 5 is devoted to proving
that the family of Urod conformal structure introduced in Section 3 also includes the special one
introduced in [3]. In Section 6, we present a decomposition formula for the 4-fermion algebra, and
in Section 7, we propose conjectures concerning the rank five fermionic algebra. In Section 8, we
consider the general case F®" and related decompositions including Conjecture 8.3 pertains to a
”square root” vertex subalgebra of F @ The concluding part includes explicit calculations of
conformal vectors needed for Theorem 4.2. We finish with brief remarks for future work.

2. PRELIMINARY RESULTS

2.1. Affine vertex algebra of s[(2). Let e, f, h denote the standard generators of sly with bracket
relations [e, f] = h, [h,e] = 2¢,[h, f] = —2f. We choose the Cartan subalgebra h = Ch and equip

2For n. =1, s0(3) 22 sl so the affine Lie algebra level for F2% s 2.
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sly with an invariant, non-degenerated bilinear form such that (h, h) = 2. We denote the positive
simple root by « and the fundamental weight by w; = §.

Denote by 5A[2 the affine Lie algebra spanned by x,, = x ®t", n € Z, and central element C, with
bracket relations (here x,y € sly)

[x’ru ym} = [Jf, y]n—i-m + ném-‘rn,O(x: y)c

Then the induced module Vg, (k,0) = U(t~'sly[t~!]) with level k # —2, has a vertex operator
algebra structure called the vacuum module. The Sugawara conformal vector (for k # —2) is given
by

1 1
wo = ———|e_1f11+ fo1e_11+ =h% 1],
WSug 2(k+2)<€1f1 +f161+21>
with central charge ¢ = % Denote the simple quotient of Vg, (k,0) by Lgi,(k,0). For k € N,

this vertex algebra is rational and a complete set of irreducible Ly, (k,0)-modules is given by
Loy, (kynwr), with 0 <n <k Ifk=-2+ 5 where p, p’ are coprime and p > 2, the level is called
admissible and all irreducible admissible modules in category O are given by: L, (k, (m — 1) —
(k+2)(m' —1))w;1), where 0 <m <pand 0 <m’ <p'.

More generally, Vg (k,0), with level k£ # —h", will denote the vacuum affine vertex algebra associ-
ated to a simple Lie algebra g and Vg (k, A) its module with highest weight A € h*. The corresponding
simple vertex algebra and modules will be denoted by Lg(k,0) and Ly(k, \), respectively.

2.2. Virasoro algebra. Let Vir denotes the Virasoro Lie algebra, spanned by L,, n € Z, and C
obeying the usual bracket relation. Irreducible lowest weight module of lowest weight h and central
charge ¢ will be denoted by Ly (¢, h), or simply L(c, h) when the context implies the Lie algebra is
Vir. The Verma module will be denoted by M(c, h) and we also let V(¢,0) = M(c, 0)/(L(—1)vc0),
the vacuum vertex algebra. It is convenient to use the following parametrization for the central
charge (t # 0):

c=1-6(t+t"'—2).

We let ho g = ﬁ(oﬁ -1) - %(aﬁ -1+ 4%(62 — 1), where o, € Z. If o, f € Z~ then M(c, ha,g)
is reducible as shown by Feigin and Fuchs (cf. [8] for more detailed account). Moreover, V (¢, 0)
is simple if and only if ¢ # § where p and p’ are integers > 2 and ged(p,p’) = 1. The case t # ﬁ
is what we will refer to as generic central charge. For generic central charges we shall need the
following result:

Proposition 2.1. Let ¢ = ¢, be generic. Then M(cy, h) is reducible for h = hy , = w-%.
For this value of h, there is a singular vector of weight n in M(c, hy,) that generates the mazimal
submodule. Consequently,

(1—-¢")

(@)oo

On the opposite spectrum, for ¢t = £, the vertex algebra L(c,/,,0) is rational. Moreover,
Virasoro modules L(cp/,, hr,s), also denoted by L(cppr, hrs), where 1 <r <p—-1,1<s<p' —1

’ 2 2
_ (rp'—sp)’—(p—p
and h, , = %
character formula:

1 2 ! /_S n T /n S
ch[L(cp/p s hrs)](q) = g . Z g e (e’ =sp) _ o ((nptr)(p'nt ))) .
(¢ Do 5=

chlL(ct, hin)l(a) = ¢

is a complete list of irreducible modules, and we have the following




4 ANTUN MILAS, MICHAEL PENN

2.3. N = 1 superconformal algebra. The Neveu-Schwarz Lie superalgebra SVir, also known
as N = 1 superconformal algebra, is generated by the Virasoro modes L,,, odd generators G, 41
m € Z, and the central element C; for more about this superalgebra see [9, 10]. We use central
charge parametrization ¢, = % — 3+t —2). Let ¢; € C\ Q, that is ¢; is generic. Then we have
the following result [9]:

Proposition 2.2. Let ¢ = ¢; be generic. Then Mys(ct, h) is reducible for hy , = "28;1 — %(n —1).
For this value of h, there is a singular vector of weight & in My s(ct, hy) that generates the mazimal
submodule. Consequently,

1—q2
Ch[Lns (cta hl;ﬂ)](Q) = th,n (_ql/Z; Q)oo((qq))
More generally if hap = g;(a? = 1) — J(af — 1) + £(8* — 1), where a,8 € Z>( such that

0 < a—f € 2Z then M,,(ct, ha,p) is reducible and has a singular vector of degree 2B that

generates the maximal submodule. ’

If p and p’ are same parity integers > 2 such that ged((p — p)/2,p’) = 1 then the vertex
superalgebra Ly(c,/p,0) is rational by a result of Adamovi¢ and the complete list of irreducible
modules is given by {Lpns(cp/pr, hrs) 11 <7 <p—1,1<s<p'—1;r =5 mod 2}; see [1]. Moreover,
we have a character formula:

_,1/2. , , ,
Ch[Ls(cpyprs hrs) (@) = g (477 oo Z (q(n2pp An(rp’=sp))/2 _ ((nptr)(p n+8))/2) i

(G D £

3. 3-FERMION VERTEX SUPERALGEBRA

In this part we are concerned with the 3-fermion vertex algebra F ©° as an extension of an Urod
vertex algebras discussed in Section 1. The 2-fermion vertex algebra does not quite fit into this
framework and is analyzed separately in Proposition 3.6.

It is a well-known [7] that

FO 2V, @ F = Lo, (2,0) @ Loy, (2, 2w1),

where L = Z and V], is the rank one lattice vertex superalgebra. The first isomorphism is just

the Boson-Fermion correspondence. Additionally there is a superconformal vector 7 € F @° that

combines with the conformal vector w and together close an N = 1 superconformal algebra of
1

central charge % With this conformal vector degree of each fermionic generator is 3.

As we discussed in the introduction, our goal is to introduce a non-standard grading on F ®°
in a way that the free fermions change their multi-grading from the usual (3,3,21) € % + N to

21272
(—%, %, %) e 7+ % What is intriguing about this new statistics is that the modified character
receives only an overall shift and it equals ¢='/2(—¢'/?; q)3_ (notice the ¢~/ prefactor).

3.1. New conformal structure. In what follows we adopt Operator Product Expansion (OPE)
notation. For the sake of brevity we write a(z) instead of Y (a,z), a € V.
We denote the odd generating field of F by ¢(z) := ZnGZ—&-% ©nz~ "2 with the OPE

1

Z—w

p(2)p(w) ~
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In F ®37 we take a set of generators:

71+i\/§ 1 1—iV3
(2) = 7 (¢(2)®1®1)+%(ﬂ®¢(2)®1)+ NG

(2) = %((‘P(Z) @1e1)-(10¢(z)@1)+ (118 ¢(2),

p3(2) = 1\/%\/g(w(Z)®ll®1)+\}6(11@9@(2)@1”1+\/i6x/§

The non-trivial OPE for these generators is given by

2 1
(2) o and ¢

1
zZ—w 2

(I@1®e(),

1®1®p(z).

(2)ps (w) ~

N

There is a copy of Lg,(2,0) inside of F ©® with generating fields
(3) hz) =2 1(2)ps(2)  e(z) = o 1(2)ps(2):, and  f(2) = 2p1(2)ps(2):,

where nontrivial OPE are given by

h(z)h(w) ~ ﬁ e(z)f(w) ~ G fmz + j&wl
(4)
h(z)e(w) ~ iefwui, h(2) f(w) ~ _z2i(:uU)

Next, we define a two-parameter family of Urod Virasoro fields in Lg,(2,0) given by

1 1 3
(5) Turoa(z) = Foe(2)f(2); + pch(2)h(2); + SOR(2) + e12(9e(2))?2 + €12 (9%e(2))e(2): + e20?e(2),
where €; and €y are an arbitrary complex parameters. Under this conformal vector, degrees of
fermionic generators are:

1 1 3
deg(@—1/2) = —y deg(%p) = bR deg(%/z) = 2

explaining the choice of indices. We also define
(6) .
Guroa(2) = = 70f(2)p_3 (2) — e22h(2)0_1 (2); — €25(0h(2))p_ 1 (2); + 2(e1 — &3)sh(2)e(2) 0

— 2e25(e(2)) 01 (2); + 2(ex — 4€3):(0e(2))e(2) 9 (2): — 832 (De(2))e(2) ¢y

3 o o
+ 2262y (2)2
Then a straightforward computation with OPEs gives:

Proposition 3.1. Tyred(z) and Gured(2) close a family of N = 1 superconformal algebras of central
charge ¢ = —%. Moreover, with this conformal vector, we have

h[F () = ¢ (=%

Vertex superalgebra F ®? equipped with such a superconformal structure (notice dependence on
€1 and €g) is referred to as Un—1.
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3.2. Decompositions. In this part we classify all (finite) decompositions of Un=1 as (S)Vir.,, x

(S)Vir.,-modules, with the overall central charge ¢; + c2 = —22—1 and with ¢; from minimal series.

We first have to narrow down possible values of central charges.

Proposition 3.2. (a) Let ¢; and co be from the minimal series for SVir and cica # 0. If
Lys(c1,0) ® Lys(c2,0) conformally embeds into Un=1, then ¢c; = co = —%. This is also an embed-
ding of N =1 vertex superalgebras.

(b) Let ¢1 and co be from the minimal series for Vir and SVir, respectively, and ¢; # 0.
If L(c1,0) ® Lys(c2,0) conformally embeds into Un—=1, then (ci,ca) = (=8 L) (c1,e0) =

21 21 1 Tou
(_ _Z)7 or (01702) = (57_11)

4
(c) Let ¢; and cy be among minimal series for Vir. If L(c1,0) ® L(c2,0) conformally embeds
mnto Un—=1, then c; = co = —% or (c1,c9) = (—6—78, —%),

Proof. To see that these cases include all possible examples, we first setup equations for central
charges and asymptotic dimensions. For part (a) using e.g. [13], we get a relation among central

charges to be
_ )2 _ )2
B N et O WA N R Gl
2 2 pq 2 rs

=cC1 =C2

and for asymptotic dimensions (here we are using that Weber’s function f has asymptotic dimension

by
3 3 8 3 8
—=—|1l-—]4+=(1-—].
2 2 pp’ 2 rs

Solving this subject to ged((p — p')/2,p") = ged((r — s)/2,7) = 1 give the only solution ¢; = ¢3 =
—2L_ Similarly we see parts (b) and (c).
O

We will now explicitly construct all the vertex algebra embeddings foreseen in Proposition 3.2.

3.3. Superconformal embedding (c;,c2) = (—2t, —21). We first construct a (super)conformal
embedding identified in Proposition 3.2 (a). We start (c1,c2) = (=2, —2L). A straightforward

but tedious computation using OPE reveals a 2-parameter family of commuting copies of SVir of
central charge ¢ = —% given by:

T)(2) =1 F() 4 e () — S ()% — 2P an(z) — (o — m)ech(z)e(2):

AT
128n% — 32n — 2 1
4 I e a)e(z): — o — m)el(O())e(): — S ()
3(512% — 1925 — 8 + 2)
+ 8
3(256n2 — 64n + 21)
* 8

€*2(0h(2))e(2)?; — 4n(32n° — 280 — 1)e*3(9%¢(2))e(2);

€*5(0%(2))e(2)%;

o?




FREE FERMIONS REVISITED 7

1 8n+1

(R =503 () + TLce()0y (2): + 2000y (2)2 + (1677 — Des(Oh(=)p_y (2);

« + 2802 + 20 — Desh(z)e(2)os (2) + 16" ——c(0e(2))p1 (2):
—4(160° — 20 + 1)e*h(2)e(2) 01 (2); — (12877 — 40n — 1)e?2(e(2))e(2)p1 (2):
~4096n° — 1536;72 +192n — 25632(66(@)6(2)2% (2)°
and
(9<)2> 1 dn—1, o, 16n—1, o, Lon+1 2 o1 (N2 o
TE) = =t f = L e() () + e th(2)% + e 0h(z) + (1207 — 3n)ech(z)Pe ()
LIS e e)ee): + (80— 2n)es (Oh(2)e(2): — A Dedel
% (—512n + 192n% + 8y — 3) €22 (0h(z))e(2)?° + (128n° + 161 — 36n + 6)€”2(0%e(2))e(2)
g (256m% — 641 + 21) €2°(0%e(2))e(2)e,
(10)
GD(=) =~ o3 (2) — T 5 ke(2)0y (202 — Tl eh(2)py ()2 — 820 — De(OR(=))p_y ():

— 44— Bn)eh(e(z)py (2): — T 2e (De()) gy (2):

+2(320° — 120+ 3)e?2h(2)e(2) 0y (2); — (1287% — 241 — 3)€*: (De(2))e(2)

40967 — 153617% + 192749 5, .
+ 5 €*2(9e(2))e(2) 0y (2)2.

Nl

Here we have

1 2
?E|8)( )+T?E|8)( ) TU'rod

€1 —2(64n%—16n+3)e2
(11) ea—(1—8n)e
1 2
GSR(2) + GY(2) = Guroa

€1—2(64n% —16n+3)e2
ea—(1—8n)e

Theorem 3.3. As N =1 vertex operator superalgebras, we have

2 2
21 \? 21 1\°®
Un=1 = Lps (—4»0> D Ly <—47—4> .

Proof. From the discussion above and relations (11) we know that there are two commuting copies
of the N = 1 superconformal algebra of central charge —=*. So we only have to rule out that one
of the copies is V,,s(— 41 ,0). But this easily follows from the previous observation of the asymptotic
growth of characters involved. The rest follows using the rationality of Lns(—%, 0) [1] and known
character formulas for irreducible modules (see Section 2). O

Comparing characters on both sides of Theorem 3.3, after multiplying with q2, gives the following
identity which can be also proven directly using g-series.

o
o
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Corollary 3.4.
1
IL> 1m0, 41, £2(m0a 8)(1 = ¢"/%)?

1/2,q)3 _ 1
* Iz 1imzo,2,43(moa 8 (1 — ¢"/%)?

N

(—q +q
3.4. (Super)conformal embedding (ci,cz) = (=11, 3). There is a Virasoro field with central
charge % given by

Tya(2) =12 () — 1 2h(2)2 — SOM(=) + h(2)%e(z): — Eh(=)0e(2): — (Oh(=))e(z);

—46%;(9e(2))%; + 6623 (Oh(2))e(2)* — 4€%:(0%e(2))e(2);

o?

(12)

and a commuting copy of the N = 1 superconformal algebra with

T(2) =g 2h()% + 5O(=) + h()e(2): — h(2)e(2): + €2(0h(=))e(z): — 260%e(2)

(13)
— 6¢%2(h(2))e(2)%: +n2(9e(2))?2 + 12 (De(2))e(2):,
and
(14)
1 o2 opiVou(s)
G(Z):—Q\/ﬁ@g( z) — \/TQGQ g( ), — Woh( )905( )
_208€ 1) o ian o ()0 — 28 =T op oo (20 + HEZ M om0 Nel2 o0 (2)°
T O (21 = g e h(Eleladoy (o) + L e(e)e(a)ey o)
 T20¢* — 2166 4 137°, e 1 (2)°
N 7 B G RNOF
Here we have
Ts14(2) + T(2) = Turoa(2) ,
€1 ——4e“+n

€a—>—2¢

Then using the same argument as in the proof of Theorem 3.3.

Proposition 3.5. As an L, (—11,0)® L (l, O) -module

Un—y = Lns (—11 0)®L(2 0)@Lm( 11 0)®L<1 1)

272

( 2)er(a)ers () o (32)

Using L (3,0) ® L (%,3) = (p1(2)) = F we get the commutant

(o1 (2
Com(F, FE") = Ls(~11,0) & Lys(—11, —%)
and therefore
Uy = (Lm(ll,()) @Lns(ll,;)> ® F.

As a conclusion we observe:
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Proposition 3.6. The two fermion vertex superalgebra F®2 admits an N = 1 conformal structure
of central charge c = —11 such that

ch[F*](q) = ¢ 2 (=¢" % 9)%.

Explicitly, inside of F®2? = <cp_%(z), ©

o

1 3 €2 €2
T() = 1203 (20003 ()4 2200y (Dos (20 S 2T (NP3 ()= S 2Ty (Do s (2]
and
1 € 136 11e
G(2) = —50a(2) + 52(0p_1)p_1 (2)ps (2) + =5 200 1)(Op_1(2))p_1(2): + ?5250_%(2)-
3.5. (Super)conformal embedding (c1,c) = (—13, =£8). Next result will be proven in a more

conceptual way later on so now we only state the result and observe that we can again use Theorem
3.3.

Proposition 3.7. As an SVir_y;,14 X Vir_gg 7-module:

Un—1 = Lns(—11/14,0) ® L(—68/7,0)®
® Lns(—11/14,—1/14) @ L(—68/7,=3/7) @® Lys(—11/14,2/7) ® L(—68/7,-2/7).

Since —% is from the minimal series of central charge for the Virasoro algebra, we also get

Vir_y114 X Vir_gg 7 decomposition (this decomposition was also mentioned in [4]) of Uy~ using

Lps(—11/14,0) = L(—11/14,0) & L(—11/4,3/2) ® L(—11/14,4) & L(—11/14,25/2)
Lps(—11/14,—1/14) = L(—11/14,-1/14) ® L(—11/4,3/7) & L(—11/14,17/7) & L(—11/14,69/14)
Lns(—11/14,2/7) = L(—11/14,2/7) & L(—11/4,11/14) & L(—11/14,25/14) & L(—11/14, 58/7).

Next we give explicit conformal and superconformal vectors in this case. The Virasoro field with
central charge —% is given by

1 1— 4 28 — 3 281+ 3
T - _ - "o ) o
o7(2) = = 7 f(2) + — = le(@)f ()0 + — 5= 53

o5 (= )84 = B)ech(2)e(2)? + 16 (40 — 1285+ 5)e2 (Oh(=))e(2):
1

56(2877 —11)(28n — 1)e2h(2)0e(z)C + —%(2877 — 11)ed?e(2)

2
(15) +33 (21952n° + 8624n> — 15148 + 2137) €2 (De(2))*2

2
+33 (219527 + 8624n* — 138047 + 1609) €2 (0%¢(2))e(2)?

+ —3%))(2877 — 11)(28n — 3)(28n + 1)e?°(Oh(2))e(2)*°
_ 384 2 3092 20
+ 9101 (7847 — 6161 + 69) €2 (0%e(2))e(2)?2,

h(z)% +

Oh(z)
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and the N = 1 superconformal algebra with central charge —% is generated by

Trpio(2) = F(2) +0e(2) ()2 + 115 (13 = 56m2h(2)22 + o (15 = 560)0h(2)

— 5 (40 = )84 — 5)Eh(2)%e(2): — 1 (4n — 1)(28n + 5)e2(Oh(=)e(2);
+ %(2877 —11)(28n — 1)e°h(2)de(2)° — 4%(2817 — 11)ed%e(2)

(16) - %(2877 +1) (784n* — 5041 + 93) €%2(De(2))*?
— % (219520 — 1332877 + 3444n — 435) €%¢%2(0%e(2))e(z)°
+ o0 (98— 11)(28y — 3)(28 + 1 (Oh(2))el(2)’:
+ % (784n* — 6161 + 69) €°2(0%e(2))e(2)?:,

and

(1)

Grna(s) =50y = S ey (2): = i\/Z(‘ln T+ 1:h(2)es (=)
+ i [Ean— s+ eheiey (92 + 5y 2iamn — s2esneore; (o

-

+ %6 %(477 — 1)(28n — 3)e2 (0h(2))p_1 ()] + 1\/5(2877 —3)ec(0e(2))p
a i % (7847 — 2801 + 37) €%:(De(2))e(2)p1 (2):

1
+ éx/ﬁ (3136n° — 14560 + 3321 — 25) €°2(De(z))e(2)*¢

W=

Here we note that

Toy7(2) + Trna(2) = Turoa(2) €14 (78477 —6167+73) "

e2——%(28n—11)¢

4. LEVEL TWO UROD ALGEBRA AND DECOMPOSITIONS

4.1. Drinfeld-Sokolov reduction. In this part we closely follow [3] and [1]. For k # —2, let
Hpgs denotes the Drinfeld-Sokolov reduction functor from the catetegory of Vi, (k,0)-modules to
the category of V(cg,0)-modules where ¢ = 1 — %. Also, denote by H I%S the diagonal
Drinfeld-Sokolov reduction as discussed in [3, 4].

First we assume that k is generic. Then Lgy, (k, nwy), n > 0, are irreducible Ly, (k,0)-modules,
so called Weyl modules. Then

H%S(Lﬁb (kvnwl)) = L(ck7 hl,n+1)
and Hbo(Lgi, (k,nwy)) = 0,4 > 1.
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For admissible levels k € —2 + Q>¢ [12], we have

s (Lay (~2+ 2 (0n = 1) = 6+ 200 = 1)1 ) ) = L )

where as before 0 <m < pand 0 <m' < p'.

In [4, 3] a result on decomposition of the ¢ = 1 level Urod algebra U = Lg,(1,0), of central
charge ¢ = —b5, tensored with a generic Virasoro algebra V' (¢, 0) is given. In other words, the vertex
algebra

V(Ct, O) ® u

is decomposed as a V' (c14+,0) ® V(ci41/¢,0)-module. This requires a decomposition of the sum of
two conformal vectors:

Tct + TUrod = Tc1+t + TCI+1/t
where T, and T,

Lt e141,, commute with each other. Explicit formulas for these conformal vectors
appearing on the right-hand side were presented in loc.cit.

A generalization and conceptual explanation of this result for any semi-simple Lie algebra g is
given in [3] among other things. In particular, if g is simply laced, then the commuting pair of
Virasoro algebra is replaced with a commuting pair of principal affine simple W-algebra Wy (g) ®
We(g) for certain k and ¢; for a precise statement [3, Section 8].

4.2. Adding a super structure. Our first result is essentially from [3]:

Theorem 4.1 (ACF). Let Un—1 be equipped with a conformal Urod structure with £ = 2 for sly as
in [3], then we have an isomorphism of vertex superalgebras >

Hps(Lot, (k,0) ® Un=1) = L(ck,0) @ Un=1.
Moreover, for any L, (k,0)-module M, we have
Hbs(M @ Uy=1) = Hs(M) @ Uy~—;.

Proof. We only have to observe that Un—1 = Lg,(2,0) @ Lg,(2,2w;) has a vertex superalgebra
structure and that Hpg commutes with direct sums. O

Next we exhibit two special cases: generic and admissible level k.

4.3. Generic case. Let L(c;,0) be a generic vertex algebra then we have the following decompo-
sition in parallel with [4].

Theorem 4.2. Let L(c;,0) be generic and Un=1 equipped with the Urod structure as in [3]. Then
we have a super conformal embedding

(18) L(c2+4,0) ® Lns(eyy2,0) = L(cr, 0) ® Un-1.

Moreover, we have a character identity:

ch[L(c;,0) ®@Un=1)(@) = D chLlczre, hin)l(a) - chlLus(eryz, hin)l(@)-

n>1
n=1 mod 2

3This is not an isomorphism of NV = 1 vertex superalgebras as superconformal vectors on two sides are different.
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Proof. We first require a decomposition of
Tc\fir + TUrod _ TViT + TNS

Ca4t Ciy2/t’
inside the tensor product of L(c,0) ® Un—1 where T, c]:’ fz P is a conformal vector that combines into
the N = 1 superconformal algebra with the same central charge. This was achieved using explicit
computations in Section 9. Additionally, the main result of Section 5 shows that a specialization of
the Urod family of conformal vectors of Uy—1 constructed earlier coincides with the level 2 Urod
conformal vector constructed in [3]; see our formula (23).
For the character identity we only have to recall Propositions 2.1 and 2.2, and an easy g-series
identity
2/9_

> grAn (1 — g2 (1 - qQ”“)) =(1-9)(—4"*19)%(¢: O)oos

n>0
which follows directly from the Jacobi triple product identity (—q'/?; ¢)2(¢; @)oo = Y onez /2. O
Remark 4.3. Theorem 4.2 clearly suggests a decomposition

L(c,0) @ Un—1 = Z L(cati, hn) ® Lns(cr42, b1 ).

n>1
n=1 mod 2

This follows using Theorem 4.1 together with an isomorphism of SVir x f;/[;—modules:
(19) Lo, (k,0) @Un=1= @  Las(cryase,hin) @ Lat, (k + 2,nw1),
n=1 mod 2

However, (19) is somewhat difficult to prove just by relying on the methods discussed in this paper.
In addition to semisimplicity of the relevant category of Ve, (k,0)-modules (which is known), we
also require a delicate argument that each Lgi,(k 4+ 2,nw1) appears in the decomposition with the
required q-multiplicity. Finally, we require a q-series identity:

2

Doam P L 2 (1 - q(Q"“)/Q) = (6 Qoo (—¢"*7; @)oo (—0"*2 75 ) e

n>0
another easy consequence of the (x,q)-Jacobi triple product identity

2
(4 D)oo (00500 (=4 P27V Q) = Y 2" /2.
ne”z

4.4. Admissible level. For admissible levels we have:

Theorem 4.4. Let (p,p’) be such that ged(p,p’) = 1 and p,p’ > 2. Then we have the following
decomposition as a Vircp,gp,er X SVirp opr4p-module:

2p"+p—1
L(cp/p,0) @Un=1 = Z L(cp j2p+p)s M1.n) ® Lns(Cp/(2p/4p), han)-

n>1
n=1 mod 2

Proof. This follows from H%g(Ls,(—k+ 1%’ 0)@Un=1) =2 Hps(Ls,(—k+ 5, 0)) ®Un=1 combined
with the decomposition formula:

kS

p
Lata (=24 5,00 @ (Luta (2,0) & Lty (2,01)) = P Loslep/pp: hi) @ Loy

0<i<2p’+p
i=1 mod 2

/’(i - 1)&]1),

3
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and more generally,

Lat (—2 2 (1) (k+ 2~ 1>>w1) © (Laty(2,0) @ Loy (2A1))

= @ Lns(cp/(Qp’+p)7 hm,i) @ Lﬁlz <£},7 (Z -1- (k + 2)(m/ - 1))&)1)

0<i<2p’+p
i=m’ mod 2
given in [13] (see also [1]). An application of Theorem 4.1 now gives
(20)
D .
L(Cta hm,m') ®UN=1 = @ Lns(cp/(2p’+p)7 hm,i) ® H%S(Lﬁb(i/’ (7' -1- (k + 2)(m/ - 1))&11))
o<i<2p/+p p
i=m’/ mod 2
= B Luslepyepip hmi) © Lcpp) o hign).
0<i<2p’+p
i=m’ mod 2
Setting (m,m’) = (1,1) now gives the formula. O

4.5. Super extensions. The present setup does not give rise to decomposition formulas for the
tensor product Lys(¢ys,0) ® Un=1. However, when we have conformal embedding L(c, ,,0) —
L,s(crs,0); in other words when the central charge belongs to both minimal series for Vir and
SVir we can get such decomposition using Theorem 4.4 and formula (20). There are precisely
three such embeddings with central charges: ¢, = %,—%, and —1; (there is also ¢, = 0 but
then the simple vertex algebra is trivial).

We start from ¢ = ¢4 5 = %. Then Lns(%,O) = L(cas,h1,1) ® L(ca5, h1,4). Using the formulas
above we get

13
L(cas,h1,1) @Un=1 = @ Lys(cana, hii) @ L(csa, b)),
i=1 mod 2
13
L(cas,h14) @Un=1 = @ Lys(canas hii) ® Lcs g, ha).
i=1 mod 2
Combining these isomorphisms gives
13
7
Lns(Toao) QUN=1 = @ Lys(cana,hii) @ (L(csia, h16) © L(cs 14, hay)),
i=1 mod 2

and therefore the coset superalgebra of Ly,5(c4,14,0) is vertex superalgebra L(cs 14, h1,1)®L(c5,14, ha 1),
of type (2,9).

Next example is ¢ = ¢35 = —%, where Lns(—%, 0) = L(c3,8,0) ® L(csg, h1,7). Similar compu-
tation as above gives an isomorphism:

91 17
Lns(*zv 0) ®Un=1 = Z L,s(c3,19,h1,:) @ (L(cg 19, h1,i) @ L(cs 19, hri))-
i=1 mod 2

Thus, the coset subalgebra of L,s(c3,19,0) is isomorphic to L(cg,19,h1,1) @ L(cs,19, h7,1), & vertex
superalgebra of type (2, 5—21)
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Finally, using decomposition formulas in Section 2.5, we get

11
Lns <_1470) ®uN:1

decomposing as an Lys(c7,31,0) @ W-module, where W is vertex superalgebra with Virasoro de-

composition:

27 145
W = L(c12,31,0) ® L(c12,31, ?) ® L(ci2,31,28) @ L(c12,31, 7)

In particular, the even subalgebra W is a W-algebra of type (2,28), which seems to be new.

5. COMPUTATION OF LEVEL 2 UROD VECTOR

In this part we mainly follow [3] but we make everything slightly more explicit for the sake of
computation.

5.1. Automorphism. We first recall some basic linear algebra facts discussed Section 2 of [3]. Let
A be a semi-simple linear operator acting on the vertex algebra V such that V' =@, ., Vi, where
V, is the finite-dimensional eigenspace for A corresponding to eigenvalue m € Spec(A). Suppose
that E is a locally finite operator on V, that is for every v € V', the space p(E) - v spans a finite-
dimensional subspace of V' (here p runs through the set of polynomials). Define A=A+ E. Next
result is just a slightly more explicit version of what was discussed in loc.cit.

Proposition 5.1. Let E be a graded linear map of degree k, that is E : V,, — Vipyr and E is
of nilpotence index N,, * when restricted to V,, and k > 1. Let B,, be a basis V,,. Then A is
diagonalizable on V and

5 Nem 1 1
B = {0 :=v+ ; (=)' 77 B'v- s v € Br}

is a basis of eigenvectors with eigenvalue m under AandV = @mZO Vi, where Vy, = Span(é)

In particular, if F is of degree 2, then

Npp—1
- o ] .
21 B, ={0:=v+ —1)—+F".:veB,}.
Going through each eigenspace V,,, this way we obtain a linear isomorphism
v =D E V.

It is not hard to see [3] that this isomorphism is a vertex algebra automorphism.

Unfortunately, construction of the Urod conformal vector given in [3] is quite non-explicit
so we have to dig deeper into the main construction. Following [3], we let C = Vg, (k,0) ®

Lei, (£,0) ® A%®/2T%(n), where A>®/27*(n) is generated by odd fields ¢ and ¢*. Letting A(z) =
ha(2) + s2JM (2)es(2), yields
Ay = (ha) (o) + (" (2)e2(2)) o)

——
=A =F

4Observe that the local finiteness condition implies that £ must be locally nilpotent.
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where J" (2) = hy(2)+229(2)1*(2)°, and operator E is locally nilpotent with k& = 2 (see Proposition
5.1), with respect to the (h2)(o) grading. Using formula (21) we get a desired isomorphism v — @ =

©s(v). In particular, in our setting with ¢ = 2, we have
(22)

e1(z) —%e1(2)(1 — sea(2) + %s4eg(z)2)g
hi(z) —hy(2) — ks?dey(2)
Fi(2) S+ Pealz) + 5sten(2)):
(%)
(=)

ea(z) —rea(2)

ha(2) —ha(z) + SQZJhl(z)eg(z)Z — i ;_ 2542(862(2))62(2)2

Fa(2) 1 al2) = 557 (T (2 hal2) + 20 (2) 4 35 (2" ()ea(2)s + (K + 2):ha(2)ea(2);

+ (k+2Pex(2)) — 1k +25%(0ea(2))ea(2)]" (2): ~ 55

3 (k+2)%s%(0%€e2(2))e2(2):

o

P(=) P2 = ea(z) + gstea(2)?);

P*() 0t )L+ Pea() + 5stea(a)):

Equipped with this isomorphism we proceed as in loc.cit. The total Virasoro field for H54(Ly(sla)®
Ls,(2,0)) is given by

Tt = (221 al2): + 2hE)eale)s + 52202 ) + 5ty (A + 2hGIer(a): + pom(2)%)

)

200N (2 + 50 (2) + 50ha(2)

and the Virasoro field for W¥(sl,) is

1 1 E+1
T, =——(-JN oM (2)% 4+ =——0J"(2) ) .
ps(2) = g (-9 + IR+ e )
Finally, the ¢ = 2 Urod conformal vector is given by ;! (Tiota1(2)) — Tps(z). Explicit computation
shows that we have
(23) 7 (Tioa(2)) = Tos(2) = Toro:)

€1 —0 ’

2
€g— 2 (7;+1)

where Ti7,0q is as in Section 3. Thus we have proved that our family of conformal Urod structures,
as a special case, contains the ¢ = 2 Urod conformal vector constructed in [3].

6. FOUR FERMION DECOMPOSITION

In parallel with Section 3.3, where we investigated specific vertex superalgebras, we can now
address the four-fermion model F®' = F @ Un=1, using that F = L(cs4,0) ® L(cs 4, %) The
overall central charge is ¢ = —21 + 1 = —10. Using (20), we get two decompositions:
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9
3
L(c34,0) ® F® = Z Lys(e3n1,h1,i) ® L(cain, hag)
i=1 mod 2
and
1 s ?
L(cs.4, 5) RF% = Z Lyns(cszi1,hii) @ L(can, hsyi)-
=1 mod 2
Combining these yields
9
4
Fo = @ Ls(cs11,h1,:) @ (L(can, his) @ Licann, hsyi))-
=1 mod 2

Observe that the coset with respect to SVire, ,, of F ®" is isomorphic to

9
L(canr,h11) @ L(cair, hs1) = L(ca11,0) @ L <C4,11, 2) )

which is a vertex operator superalgebra of type (2, %)

Four-fermion model can be also accessed from a different perspective because it belongs to the
D-series due to s0(4) = sly @ sly. Again the central charge is ¢ = —10 and this exactly matches
CUrod,so(4) given in Section 7.. More precisely, we have an isomorphism

FO = Loy (1,0)%° @ Lag, (1,01),
with respect to the standard grading, and thus
]:®4 = Z/{®2 @ L5;2(1,w1)®2.
where U is the ¢ = —5 Urod algebra of sly constructed in [4].
7. FIVE-FERMION MODEL AND s0(5)

Here we have F® = Lo (5)(1,0) @ Lgos)(1,w1), or we can use sp(4) = so(5). Using [3, formula
(33)] we found that the Urod central charge of s0(5) is given by:

104(17 + 64)
CUrod,so(5) = 7374_[
so for £ = 1 we get cyrod,so(s) = —%. Narrowing down possible embeddings of rational WW-

(super)algebras using central charges and asymptotic dimensions suggests the following:

Conjecture 7.1. Let c(k) be a central charge from the minimal series of Wi (s0(5)). Also, let F&°
be equipped with an Urod conformal structure of level £ = 1. Then
(a) The only conformal embedding of

W, (505) @ Wi, (505) < Lea(s)(1,0) <> F

occurs for c1(k1) = ca(ke) = —% and this embedding extends to a unique conformal embedding

Wi (05p(1]4)) © Wi (0sp(1]4)) < F°, again with c1(k;) = ca(kh) = —118.
(b) The only embeddings of
Wi, (08p(1]4)) x Wy, (s05) < F&
occur for: ci (ki) = ca(k2) = =132, e1(k1) = =58, ca(k2) = § and c1(k1) = =%, (k) = —11.
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8. GENERAL F®"

Moving to higher ranks, we are no longer able to provide a complete (conjectural) statements
as in Conjecture 7.1. Therefore, our focus shifts solely to decompositions directly associated with
Urod algebras.

8.1. Urod grading on F®". Let us first elucidate how the Urod grading on F®" alters the
standard grading, where all fermions are assigned a degree of % This aspect was also briefly
touched upon in the introduction, serving as motivation for Urod central charges of the orthogonal
series.

Recall that the affine vertex algebra of so(n), n > 3 at level 1 admits a fermionic construction
[7]; see also [14] and [2] for related results. For s0(2n), Lsa(2n)(1,0) is realized as the even part of

A®2", where A®”" is the infinite-wedge vertex algebra generated by n-pairs of charged free fermions
Yi(2),9F (%), 1 <i < n. Similarly, for so(2n + 1), the even part of the vertex superalgebra
A®2" ® f o }_®2n+1

is isomorphic to Lgo(2n41)(1,0), where F is as before a single neutral free fermion generated by
©(z). Let us consider g = so(2n + 1) here; arguments for so(2n) are very similar so we omit them.

The affine Lie algebra of so(2n + 1) is generated by the quadratic operators in the fields ;(z),
Y7 (z) and ¢(2). The fields of the Chevalley generators of the Cartan algebra, hi(2),....,hn(2), are
represented using fields 2¢;(2)17(2)2, 1 < i < n—1and 2°¢,(2)¢%(2)2. Let {e, f, h} be an sly-triple
where f is the principal nilpotent element with

n—1
) , n(n+1)
h=Y (2n—i+1)ih; + =l
=1

Therefore, to compute the conformal weights of 1;(—1/2)1, 17 (~1/2)1, and ¢(—1/2)1 with respect
to the Urod conformal vector, we have to compute their eigenvalues with respect to L(0)sug—(0)(0)
[3], where z¢ = % Plugging the relevant quadratic fermionic generators into our formula for h(z),
together with L(0)syga(—1/2)1 = 2a(—1/2)1, for a = ¢, 1;, 9], yields that the (2n + 1) fermions
have the following conformal weights:

2n—1 2n—3 3 11 2n+1
2 b 2 ) ) 27 27 2’ 2 N
With these explicit shifts, we can now compute the character of F R
2n+1 2n —2n+1424 i2
h[F ) =[(~¢7 7 @) =q Z=1 7 (¢ )20,
i=0

as we previously argued in the introduction.

2n+1

8.2. F® . Let us denote by ¢4 the central charge of the principal affine W-algebra by Wi(g).
For orthogonal and symplectic series we have:

n(4n? + 4kn — 2k — 3)(2n(n + k + 2) + k)
k+n+1

_ (2n+1)(@2@2n - 1)(k+n) —1)(dn(k+n) +1)

Cosp(llzn) = 2(2k + 2n + 1) ’

Csp(2n) = —

)
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n(4n? +2k(n+1) = 3)(2n(2n + k — 1) + k)

cso(2n+1) = -

E+2n—1 ’
~ n(2kn — 2k +4n® — 10n +5) (2kn — k + 4n® — 8n + 4)
Cso(2n) - k+2n72 .

The Feigin-Frenkel duality gives Wy (so(2n+1)) & W—”—1+2<k+5 -

either algebra. A bit tedious computation using [3] shows that the central charge cyroq,q Of the
level ¢ Urod vertex algebra L, = Ly(¢,0) is given by:

(8psy, ), > 2 80 we can consider

n(2n + 1)(4n? + 2n — 3 + 20(1 + n))
n+40—1 ’

CUrod,so(2n+1) = —

n(2n +1)(4n? 4+ 2n — 3+ 24(n — 1))
n+l+1

CUrod,sp(2n) = —

)

0(2n? —n)((2n — 2)0 + 4n? — 8n + 3)
2n — 2+ ¢
In particular, these central charges are independent of the parameter k in [3, formula (33)]. Here,
in the computations, we have chosen the same z( as in the definition of the principal W-algebra.
Using arguments from [3] and [5, Section 7] we see that the tensor product of affine W-superalgebras

CUrod,so(2n) = —

W_ (i1 24 2z (05p(1]2n)) @ W_

2(2k+n)

(so(2n + 1))

2n—1
=1+ i)

conformally embeds into the vertex superalgebra

2n+1

Wil(so(2n +1)) @ F&"

2n+1
2n+2"

where F@""" is equipped with an Urod conformal structure. If we choose k = —(2n — 1) +
which belong to the minimal series, we have Wi (so(2n + 1)) = C, and hence

Proposition 8.1. There is a conformal embedding:

2n+1
) (05D(120)) @ W5, 1)y 20 (s0(20 + 1)) > F

_("+%)+ 3+4n

Next discussion does not seem to follow the setup of [3]. First we observe a result from [5, Section
7):

Lemma 8.2. The rational vertez algebra W_(n+1)+%(5p2n) = W_(Zn_lﬂ_%(so@n + 1)), of
central charge %cUmd’SO@nH), is the even part of the affine vertex superalgebra W(osp(1|2n)) with

{=—(n+3)+ 2L Consequently, Wy(osp(1]2n)) is rational.

Then our next conjecture can be viewed as a higher-rank generalization of Theorem 3.3:

2n+1

Conjecture 8.3. (Square root ®> of F®""" ) There is a conformal embedding

2n+1

W_(n+%)+z§7;1(05p(1|2n))®2 — F®

5If V and W are rational, and W ® W conformally embedded in V', we say that W is a square root V.



FREE FERMIONS REVISITED 19

8.3. F®". The case F&" is easier because this is a level 1 module for the simply-laced affine Lie
algebra of type DS, n > 2, so results from [3] are applicable. We use [7]

FEm = Lso(Qn)(LO) D Lso(2n)(17w1)v
so that F®2" can be equipped with an Urod structure. Using [3, Corollary 8.8] we get an embedding
W7(2n72)+%(50(2n)) ® W7(2n72)+%(50(2n)) — Lgo(20)(1,0)

and similarly for Lg,(2,)(1,w1). However, the W-algebra modules that appear in the decomposition
of Lgo(2n)(1,w1) are different from those in Lgo(25,)(1,0) (see again [3, Corollary 8.8.2]) so this way
we do not obtain new super extensions of Wy (s0(2n)).

9. EXPLICIT FORMULAS

In this section we give explicit formulas for commuting Virasoro and super-Virasoro generators
within V (¢, 0) @ Un=1. In fact this is slightly more general than the setup of [3] because we provide
a two-parameter family of decompositions. Inside of V(¢,,0) ® Un—1 we have commuting copies of
Viroys and SViry 42 generated by

4 2nt — 1 4 2t —t—1

4t +2) ° ° 2(t +2)
n(6n + 3nt — 2) 2 n(2n+nt —1)
°h ° °(Oh °
Mg e+ =a g e Oh@)el):
16m% — 8n + 40t + 2nt? + 160>t — ¢ t(8n +4nt + 2t — 1
1607 — 8n + 4n°t° + 2nt* 4 161 Ch(2)0e(2): + (8n +4nt + )
4(t +2)2 At +2)2
N —23(t+2)% + 202 (t + 2)2(2t + 1) + 2nt(t +2)(2t — 1) + (2 — 3t)¢
4(t +2)3
=212 =23 (t +2)3 + 202 (t + 2)2(2t + 1)+t (t +2) (4t — 1)+t o,
+ €
4(t +2)3 °
N 6n3(t+2)3 —6n*(t+2)> —nt(t+2) +t
8(t +2)3
Lt (—16n (2 +t —2) — 8n*(t +2)* + 11t — 12)
32(t 4 2)*
t t t—nt(t+2) 5,
__ A tmnt+2)
o (t+2)3 o

Ty, () = = () + m:e(2) f(2):

€0%e(2)

€22(0%e(2))e(2);

o

(De(2))%

¢ (Oh(2))e(2)*;

o

€’5(0%e(2))e(2)%;

o

e(z)2Tcyn~(z)Z
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Ty (2) =g 12) 4 30— dne(a) (2 + D=2 ayes o SR o)
n(2—3nt+2)) , o, Nt—nt+2)) ,
wﬁoh(z)%(z) w €.(0h(z))e(z);
16m% — 8n + 4n?t? + 2nt? + 160t — ¢ . t(3—2nt) —4

TCEIE e2h(z)0e(2)° + 1522 ede(z)
27 (L +2)° = 2(t = 1)(E+2)° + 2t +2)(3E = 4) + (£ =2)* 5, 0 .
T %2 (0%e(2))e(2):
N (n(t+2)—1)(-2n (t4(t_j)2; 207 (t +2)% + 3t — 4) 22(De(2))?:
—6m2(t+2)> + 602 (t +2)2 +nt(t+2) —t ,, -
+ 8t +2)° € 5 (0h(z))e(2)";
t(16n (12 +t —2) + 8n*(t +2)* — 11t + 12)
32(t + 2)*

8n +

€5(0%e(2))e(2)*:

2
T, ° . AT E 0
R Ctv()+(t+2)2° e (t+2)3 °

ne(n(t+2)+t—2), O
2\/t(t +2) S(Oh(2)) -4 (2)2

Bt +2)e (22(t+2)> —n(t+2) +¢ - 1),

At +2)° : .

GCN:21 (Z) =

- ey (o A ey ()
i+ 2 ﬁ(i) 052 =9+ Dope(z)?ey (2)
t(t +2)e? (1603 (t + 2)° —161(31(;; 2)? + 8nt(t +2) — 5t +4) °(9e(2))e(2)%p (2):
WZe(z)wg(z)z + ng(@ + ng))ng(z)so_;(z)Z

Here we have

Tc;/j: (Z) + Tchzl (Z) = TCt (Z) + TUTOd(Z) e2(277(t2+t—2)+n2(t+2)2—t+1) :

t
=+ €1—>

2(t42)2

(n(t42)+t—1
ea— SRS
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10. FUTURE WORK

Based on the ideas and results in our paper (and of course [3]), there are several future avenues
for exploration.

(Twisted modules) Clearly, we can modify many results here and in [3] for twisted modules with
respect to the parity operators ¢. In particular, all results for Uy—; in Section 3 have a version where
the Neveu-Schwarz algebra is replaced with the Ramond superconformal algebra. For example, the
o-twisted F® -module ]-'%’2 admits an isomorphism

3
FE > Iy (—11,—) .
8
(Nilpotent elements) Another direction, motivated by [3], is to study different gradings and
decompositions on F®" coming from non-principal nilpotent elements. As an example, here we
consider f = fsubreg (subregular) and f = fp, (minimal) nilpotent elements of so0(5).

The Urod structure on the level £ € N affine vertex algebra L, = Lgo(5)(¢,0) has central charge
_26(1346¢0)
3+¢

with respect to the degree operator fermionic generators receive conformal weights:
Consequently,

c = Letting ¢ = 1, gives conformal vector Tuyod,f,,s,., Of central charge —%2 and

13 111
2727 27272°

5
chy, e, [F2 (@) = a2 (—¢"?; )5

For f = fmin, the Urod affine vertex algebra L, = Lgq(5)(¢,0) has central charge ¢ = _ 244430

344
Similarly, letting ¢ = 1, gives central charge —% and fermionic generators have conformal weights:

0,0,1,1, %7 and therefore

chy [F21(0) = 4(—¢; )% (0% @)oo

Observe that in both cases ¢~/?4ch[.] are modular functions.
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