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Abstract. Free fermion vertex superalgebras are discussed from the point of view of Urod vertex
algebras [3, 4]. We present all finite decompositions of the 3-fermion vertex algebra via Virasoro
and N = 1 superconformal vertex algebras. We also present decompositions of higher rank
fermion algebras using affine W -algebras, and a conjecture on the existence of the ”square root”
of the (2n+ 1) fermion algebra.

1. Introduction

The free fermion vertex algebra is, in a suitable sense, the smallest rational vertex (super)algebra,
holding a pivotal role within the theory of vertex algebras. For some basic facts about free fermions,
charged free fermions, and the celebrated Boson-Fermion correspondence see [7, 10]. To introduce
this algebra, we first define the fermionic superalgebra with odd generators ϕn, n ∈ Z+ 1

2 , obeying
anti-commutation relations:

[ϕm, ϕn]+ = δm+n,0.

Then the free fermion vertex algebra (also known as ’fermionic Fock space’) is given by F = Λ∗(V )
where Λ∗(V ) denotes the exterior algebra on V = Span{ϕ−1/2, ϕ−3/2, . . .}. It is well known that

F can be equipped with a unique conformal vertex algebra structure of central charge 1
2 with

conformal vector ωF = 1
2ϕ−3/2ϕ−1/21 (throughout, 1 denotes the vacuum vector). Under this

conformal structure, the fermionic generator ϕ := ϕ−1/21 has degree 1
2 . The space F further

decomposes as a Virasoro algebra module (notation defined below) [10]:

F = L

(
1

2
, 0

)
⊕ L

(
1

2
,
1

2

)
.

Clearly, the character 1 of F with respect to L(0) := (ωF )(1) is given by

ch[F ](q) = (−q 1
2 ; q)∞,

where we use q-Pochammer symbol notation (a; q)n :=
∏n

i=1(1− aqi−1).

More generally, we consider the tensor product of n copies of F , F⊗n

:= F ⊗ · · · ⊗ F , of cen-
tral charge c = n

2 with the character ch[F⊗n

](q) = (−q; q1/2)n∞. These vertex superalgebras are
important as they carry actions of the level one orthogonal affine Lie algebras [7], (see also [14]).
Moreover, modules of L( 12 , 0)

⊗n

are building blocks of holomorphic vertex algebras, including the

Moonshine Module. Observe that with c = n
2 , the character q−c/24ch[F⊗n

] is a modular form of

weight zero (notice the n-th power of Weber’s modular functions f(q) = q−1/48(−q1/2; q)∞)).

1Here the character is defined as Tr qL(0), where L(0) is the degree operator.
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In this paper we are interested in a new grading on F⊗n

, specifically pertaining to integral shifts
of fermionic modes, such that for n ≥ 1:

chnew[F⊗2n+1

](q) =

n∏

i=−n

∞∏

m≥1

(1 + qm−i−1/2) = q−
∑n

i=1
i2

2

∞∏

m≥1

(1 + qm−1/2)2n+1,

and for n ≥ 2,

chnew[F⊗2n

](q) = (−q1/2; q)∞
n−1∏

i=−(n−1)

∞∏

m≥1

(1 + qm−i−1/2) = q−
∑n−1

i=1
i2

2

∞∏

m≥1

(1 + qm−1/2)2n.

Observe that the conformal weights (or degrees) of generating fields receive both positive and
negative integral shifts. If we try to turn these modified characters into modular functions using
the standard procedure, q−c/24ch[·], a new central charge arises and we require

cF⊗2n+1 = −24

(
n∑

i=1

i2

2
− 2n+ 1

48

)
= −1

2
(2n+ 1)(4n2 + 4n− 1),

cF⊗2n = −24

(
n−1∑

i=1

i2

2
− 2n

48

)
= −n(1− 6n+ 4n2).

As we shall see in Section 8, these are precisely Urod central charges of the ` = 1 level simple affine
vertex algebra of so(2n+ 1) 2 and so(2n), respectively. The Urod vertex algebra of sl2 with ` = 1
was introduced by Bershtein, Feigin, and Litvinov in [4] and studied in full generality for all simple
Lie algebras in [3]; see also [6] for their relevance to gluing operations on 4-manifolds and CFT.

The objective of this paper is to examine various decompositions of F⊗n

featuring a distinctive
grading as above, in terms of affine W -algebras with a specific focus on the n = 3 case.

Our paper is structured as follows. In Section 2, we compile known facts concerning Lie algebras,
vertex algebras, and their representations pertinent to our study. In Section 3, we study a family of

(super)conformal structures on the 3-fermion vertex algebra F⊗3

, denoted by UN=1; see formulas
(5),(6). Then we obtain all finite decompositions of UN=1 in terms of (S)V ir×(S)V ir-modules (see
Proposition 3.2, Theorem 3.3, etc.). Additionally, we discuss the 2-fermion model; see Proposition
3.6. In Section 4, which is mostly a consequence of results from [3] and [12], we give a decomposition
of L(cp,p′ , 0)⊗UN=1 vertex algebra in Theorem 4.4. Furthermore, in Section 4.5 we furnish several
decompositions for Lns(cp,p′ , 0)⊗UN=1 for special central charges. Section 5 is devoted to proving
that the family of Urod conformal structure introduced in Section 3 also includes the special one
introduced in [3]. In Section 6, we present a decomposition formula for the 4-fermion algebra, and
in Section 7, we propose conjectures concerning the rank five fermionic algebra. In Section 8, we
consider the general case F⊗n

and related decompositions including Conjecture 8.3 pertains to a

”square root” vertex subalgebra of F⊗2n+1

. The concluding part includes explicit calculations of
conformal vectors needed for Theorem 4.2. We finish with brief remarks for future work.

2. Preliminary results

2.1. Affine vertex algebra of sl(2). Let e, f, h denote the standard generators of sl2 with bracket
relations [e, f ] = h, [h, e] = 2e, [h, f ] = −2f . We choose the Cartan subalgebra h = Ch and equip

2For n = 1 , so(3) ∼= sl2 so the affine Lie algebra level for F⊗
3
is 2.
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sl2 with an invariant, non-degenerated bilinear form such that (h, h) = 2. We denote the positive
simple root by α and the fundamental weight by ω1 = α

2 .

Denote by ŝl2 the affine Lie algebra spanned by xn = x⊗ tn, n ∈ Z, and central element C, with
bracket relations (here x, y ∈ sl2)

[xn, ym] = [x, y]n+m + nδm+n,0(x, y)C.

Then the induced module Vsl2(k, 0)
∼= U(t−1sl2[t

−1]) with level k 6= −2, has a vertex operator
algebra structure called the vacuum module. The Sugawara conformal vector (for k 6= −2) is given
by

ωSug =
1

2(k + 2)

(
e−1f−11+ f−1e−11+

1

2
h2−11

)
,

with central charge c = 3k
k+2 . Denote the simple quotient of Vsl2(k, 0) by Lsl2(k, 0). For k ∈ N,

this vertex algebra is rational and a complete set of irreducible Lsl2(k, 0)-modules is given by
Lsl2(k, nω1), with 0 ≤ n ≤ k. If k = −2 + p

p′ where p, p′ are coprime and p ≥ 2, the level is called

admissible and all irreducible admissible modules in category O are given by: Lsl2(k, ((m − 1) −
(k + 2)(m′ − 1))ω1), where 0 < m < p and 0 < m′ < p′.

More generally, Vg(k, 0), with level k 6= −h∨, will denote the vacuum affine vertex algebra associ-
ated to a simple Lie algebra g and Vg(k, λ) its module with highest weight λ ∈ h∗. The corresponding
simple vertex algebra and modules will be denoted by Lg(k, 0) and Lg(k, λ), respectively.

2.2. Virasoro algebra. Let V ir denotes the Virasoro Lie algebra, spanned by Ln, n ∈ Z, and C
obeying the usual bracket relation. Irreducible lowest weight module of lowest weight h and central
charge c will be denoted by LV ir(c, h), or simply L(c, h) when the context implies the Lie algebra is
V ir. The Verma module will be denoted by M(c, h) and we also let V (c, 0) =M(c, 0)/(L(−1)vc,0),
the vacuum vertex algebra. It is convenient to use the following parametrization for the central
charge (t 6= 0):

ct = 1− 6(t+ t−1 − 2).

We let hα,β = t
4 (α

2 − 1)− 1
2 (αβ − 1) + 1

4t (β
2 − 1), where α, β ∈ Z. If α, β ∈ Z>0 then M(ct, hα,β)

is reducible as shown by Feigin and Fuchs (cf. [8] for more detailed account). Moreover, V (ct, 0)
is simple if and only if t 6= p

p′ where p and p′ are integers ≥ 2 and gcd(p, p′) = 1. The case t 6= p
p′

is what we will refer to as generic central charge. For generic central charges we shall need the
following result:

Proposition 2.1. Let c = ct be generic. ThenM(ct, h) is reducible for h = h1,n = (n−1)(n+1)
4t −n−1

2 .
For this value of h, there is a singular vector of weight n in M(c, hn) that generates the maximal
submodule. Consequently,

ch[L(ct, h1,n)](q) = qh1,n
(1− qn)

(q; q)∞
.

On the opposite spectrum, for t = p
p′ , the vertex algebra L(cp/p′ , 0) is rational. Moreover,

Virasoro modules L(cp/p′ , hr,s), also denoted by L(cp,p′ , hr,s), where 1 ≤ r ≤ p− 1, 1 ≤ s ≤ p′ − 1

and hr,s = (rp′−sp)2−(p−p′)2

4pp′ is a complete list of irreducible modules, and we have the following

character formula:

ch[L(cp/p′ , hr,s)](q) = qhr,s
1

(q; q)∞

∑

n∈Z

(
q(n

2pp′+n(rp′−sp)) − q((np+r)(p′n+s))
)
.
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2.3. N = 1 superconformal algebra. The Neveu-Schwarz Lie superalgebra SV ir, also known
as N = 1 superconformal algebra, is generated by the Virasoro modes Ln, odd generators Gm+ 1

2
,

m ∈ Z, and the central element C; for more about this superalgebra see [9, 10]. We use central
charge parametrization ct =

3
2 − 3(t+ t−1 − 2). Let ct ∈ C \ Q, that is ct is generic. Then we have

the following result [9]:

Proposition 2.2. Let c = ct be generic. Then Mns(ct, h) is reducible for h1,n = n2−1
8t − 1

4 (n− 1).
For this value of h, there is a singular vector of weight n

2 in Mns(ct, hn) that generates the maximal
submodule. Consequently,

ch[Lns(ct, h1,n)](q) = qh1,n(−q1/2; q)∞
(1− q

n
2 )

(q; q)∞
.

More generally if hα,β = 1
8t (α

2 − 1) − 1
4 (αβ − 1) + t

8 (β
2 − 1), where α, β ∈ Z≥0 such that

0 < α − β ∈ 2Z then Mns(ct, hα,β) is reducible and has a singular vector of degree αβ
2 that

generates the maximal submodule.
If p and p′ are same parity integers ≥ 2 such that gcd((p − p′)/2, p′) = 1 then the vertex

superalgebra Lns(cp/p′ , 0) is rational by a result of Adamović and the complete list of irreducible
modules is given by {Lns(cp/p′ , hr,s) : 1 ≤ r ≤ p−1, 1 ≤ s ≤ p′−1; r ≡ s mod 2}; see [1]. Moreover,
we have a character formula:

ch[Lns(cp/p′ , hr,s)](q) = qhr,s
(−q1/2; q)∞

(q; q)∞

∑

n∈Z

(
q(n

2pp′+n(rp′−sp))/2 − q((np+r)(p′n+s))/2
)
.

3. 3-fermion vertex superalgebra

In this part we are concerned with the 3-fermion vertex algebra F⊗3

as an extension of an Urod
vertex algebras discussed in Section 1. The 2-fermion vertex algebra does not quite fit into this
framework and is analyzed separately in Proposition 3.6.

It is a well-known [7] that

F⊗3 ∼= VL ⊗F ∼= Lsl2(2, 0)⊕ Lsl2(2, 2ω1),

where L = Z and VL is the rank one lattice vertex superalgebra. The first isomorphism is just

the Boson-Fermion correspondence. Additionally there is a superconformal vector τ ∈ F⊗3

that
combines with the conformal vector ω and together close an N = 1 superconformal algebra of
central charge 3

2 . With this conformal vector degree of each fermionic generator is 1
2 .

As we discussed in the introduction, our goal is to introduce a non-standard grading on F⊗3

in a way that the free fermions change their multi-grading from the usual ( 12 ,
1
2 ,

1
2 ) ∈ 1

2 + N to

(− 1
2 ,

1
2 ,

3
2 ) ∈ Z + 1

2 . What is intriguing about this new statistics is that the modified character

receives only an overall shift and it equals q−1/2(−q1/2; q)3∞ (notice the q−1/2 prefactor).

3.1. New conformal structure. In what follows we adopt Operator Product Expansion (OPE)
notation. For the sake of brevity we write a(z) instead of Y (a, z), a ∈ V .

We denote the odd generating field of F by ϕ(z) :=
∑

n∈Z+ 1
2
ϕnz

−n−1/2 with the OPE

ϕ(z)ϕ(w) ∼ 1

z − w
.
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In F⊗3

, we take a set of generators:

(1)

ϕ− 1
2
(z) =

1 + i
√
3√

6
(ϕ(z)⊗ 1⊗ 1) +

1√
6
(1⊗ ϕ(z)⊗ 1) +

1− i
√
3√

6
(1⊗ 1⊗ ϕ(z)) ,

ϕ 1
2
(z) =

1√
3
((ϕ(z)⊗ 1⊗ 1)− (1⊗ ϕ(z)⊗ 1) + (1⊗ 1⊗ ϕ(z))),

ϕ 3
2
(z) =

1− i
√
3√

6
(ϕ(z)⊗ 1⊗ 1) +

1√
6
(1⊗ ϕ(z)⊗ 1) +

1 + i
√
3√

6
(1⊗ 1⊗ ϕ(z)) .

The non-trivial OPE for these generators is given by

(2) ϕ− 1
2
(z)ϕ 3

2
(w) ∼ 2

z − w
and ϕ 1

2
(z)ϕ 1

2
(w) ∼ 1

z − w
.

There is a copy of Lsl2(2, 0) inside of F⊗3

with generating fields

(3) h(z) = ◦

◦
ϕ− 1

2
(z)ϕ 3

2
(z)◦

◦
, e(z) = ◦

◦
ϕ− 1

2
(z)ϕ 1

2
(z)◦

◦
, and f(z) = ◦

◦
ϕ 1

2
(z)ϕ 3

2
(z)◦

◦
,

where nontrivial OPE are given by

(4)

h(z)h(w) ∼ 4

(z − w)2
, e(z)f(w) ∼ 2

(z − w)2
+

h(w)

z − w
,

h(z)e(w) ∼ 2e(w)

z − w
, h(z)f(w) ∼ −2f(w)

z − w
.

Next, we define a two-parameter family of Urod Virasoro fields in Lsl2(2, 0) given by

(5) TUrod(z) =
1

4
◦

◦
e(z)f(z)◦

◦
+

1

16
◦

◦
h(z)h(z)◦

◦
+

3

8
∂h(z)+ ε1

◦

◦
(∂e(z))2◦

◦
+ ε1

◦

◦
(∂2e(z))e(z)◦

◦
+ ε2∂

2e(z),

where ε1 and ε2 are an arbitrary complex parameters. Under this conformal vector, degrees of
fermionic generators are:

deg(ϕ−1/2) = −1

2
, deg(ϕ1/2) =

1

2
, deg(ϕ3/2) =

3

2
,

explaining the choice of indices. We also define
(6)

GUrod(z) =− 1

4
◦

◦
f(z)ϕ− 1

2
(z)◦

◦
− ε2

◦

◦
h(z)2ϕ− 1

2
(z)◦

◦
− ε2

◦

◦
(∂h(z))ϕ− 1

2
(z)◦

◦
+ 2(ε1 − ε22)

◦

◦
h(z)e(z)2ϕ 1

2
(z)◦

◦

− 2ε2
◦

◦
(∂e(z))ϕ 1

2
(z)◦

◦
+ 2(ε1 − 4ε22)

◦

◦
(∂e(z))e(z)ϕ 1

2
(z)◦

◦
− 8ε32

◦

◦
(∂e(z))e(z)2ϕ 1

2
(z)◦

◦

+
3

4
◦

◦
e(z)ϕ 3

2
(z)◦

◦
.

Then a straightforward computation with OPEs gives:

Proposition 3.1. TUrod(z) and GUrod(z) close a family of N = 1 superconformal algebras of central
charge c = − 21

2 . Moreover, with this conformal vector, we have

ch[F⊗3

](q) = q−1/2(−q1/2; q)3∞.

Vertex superalgebra F⊗3

equipped with such a superconformal structure (notice dependence on
ε1 and ε2) is referred to as UN=1.



6 ANTUN MILAS, MICHAEL PENN

3.2. Decompositions. In this part we classify all (finite) decompositions of UN=1 as (S)V irc1 ×
(S)V irc2 -modules, with the overall central charge c1 + c2 = − 21

2 and with ci from minimal series.
We first have to narrow down possible values of central charges.

Proposition 3.2. (a) Let c1 and c2 be from the minimal series for SV ir and c1c2 6= 0. If
Lns(c1, 0)⊗ Lns(c2, 0) conformally embeds into UN=1, then c1 = c2 = − 21

4 . This is also an embed-
ding of N = 1 vertex superalgebras.

(b) Let c1 and c2 be from the minimal series for V ir and SV ir, respectively, and c1 6= 0.
If L(c1, 0) ⊗ Lns(c2, 0) conformally embeds into UN=1, then (c1, c2) = (− 68

7 ,− 11
14 ), (c1, c2) =

(− 21
4 ,− 21

4 ), or (c1, c2) = ( 12 ,−11).
(c) Let c1 and c2 be among minimal series for V ir. If L(c1, 0) ⊗ L(c2, 0) conformally embeds

into UN=1, then c1 = c2 = − 21
4 or (c1, c2) = (− 68

7 ,− 11
14 ).

Proof. To see that these cases include all possible examples, we first setup equations for central
charges and asymptotic dimensions. For part (a) using e.g. [13], we get a relation among central
charges to be

−21

2
=

3

2

(
1− 2

(p− p′)2

pq

)

︸ ︷︷ ︸
=c1

+
3

2

(
1− 2

(r − s)2

rs

)

︸ ︷︷ ︸
=c2

and for asymptotic dimensions (here we are using that Weber’s function f has asymptotic dimension
1
2 ):

3

2
=

3

2

(
1− 8

pp′

)
+

3

2

(
1− 8

rs

)
.

Solving this subject to gcd((p − p′)/2, p′) = gcd((r − s)/2, r) = 1 give the only solution c1 = c2 =
− 21

4 . Similarly we see parts (b) and (c).
�

We will now explicitly construct all the vertex algebra embeddings foreseen in Proposition 3.2.

3.3. Superconformal embedding (c1, c2) = (− 21
4 ,− 21

4 ). We first construct a (super)conformal

embedding identified in Proposition 3.2 (a). We start (c1, c2) = (− 21
4 ,− 21

4 ). A straightforward
but tedious computation using OPE reveals a 2-parameter family of commuting copies of SV ir of
central charge c = − 21

4 given by:

(7)

T
(1)
3|8 (z) =

1

16ε
f(z) + η◦

◦
e(z)f(z)◦

◦
− 3− 16η

32
◦

◦
h(z)2◦

◦
− 5− 16η

16
∂h(z)− 3(4η2 − η)ε◦

◦
h(z)2e(z)◦

◦

+
128η2 − 32η − 3

8
ε◦
◦
h(z)∂e(z)◦

◦
− 2(4η2 − η)ε◦

◦
(∂h(z))e(z)◦

◦
− 32η + 1

8
ε∂2e(z)

+
3(512η3 − 192η2 − 8η + 2)

8
ε2◦

◦
(∂h(z))e(z)2◦

◦
− 4η(32η2 − 28η − 1)ε2◦

◦
(∂2e(z))e(z)◦

◦

+
3(256η2 − 64η + 21)

8
ε3◦

◦
(∂2e(z))e(z)2◦

◦
,
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(8)

G
(1)
3|8(z) =

1

8ε
ϕ 3

2
(z) +

8η + 1

4
◦

◦
e(z)ϕ 3

2
(z)◦

◦
+ 2η◦

◦
h(z)ϕ 1

2
(z)◦

◦
+ (16η2 − 1)ε◦

◦
(∂h(z))ϕ− 1

2
(z)◦

◦

+ 2(8η2 + 2η − 1)ε◦
◦
h(z)e(z)ϕ 1

2
(z)◦

◦
+

16η − 1

2
ε◦
◦
(∂e(z))ϕ 1

2
(z)◦

◦

− 4(16η2 − 2η + 1)ε2◦

◦
h(z)e(z)2ϕ 1

2
(z)◦

◦
− (128η2 − 40η − 1)ε2◦

◦
(∂e(z))e(z)ϕ 1

2
(z)◦

◦

− 4096η3 − 1536η2 + 192η − 25

2
ε3◦

◦
(∂e(z))e(z)2ϕ 1

2
(z)◦

◦

and
(9)

T
(2)
3|8 (z) =− 1

16ε
f − 4η − 1

4
◦

◦
e(z)f(z)◦

◦
+

16η − 1

32
◦

◦
h(z)2◦

◦
+

16η + 1

16
∂h(z) + (12η2 − 3η)ε◦

◦
h(z)2e(z)◦

◦

− 128η2 − 32η + 3

8
ε◦
◦
h(z)∂e(z)◦

◦
+ (8η2 − 2η)ε◦

◦
(∂h(z))e(z)◦

◦
− 32η − 9

8
ε∂2e(z)

+
3

8

(
−512η3 + 192η2 + 8η − 3

)
ε2◦

◦
(∂h(z))e(z)2◦

◦
+ (128η3 + 16η2 − 36η + 6)ε2◦

◦
(∂2e(z))e(z)◦

◦

− 3

8

(
256η2 − 64η + 21

)
ε3◦

◦
(∂2e(z))e(z)2◦

◦
,

(10)

G
(2)
3|8(z) =− 1

8ε
ϕ 3

2
(z)− 8η − 3

4
◦

◦
e(z)ϕ 3

2
(z)◦

◦
− 4η − 1

2
◦

◦
h(z)ϕ 1

2
(z)◦

◦
− 8(2η2 − 1)ε◦

◦
(∂h(z))ϕ− 1

2
(z)◦

◦

− 4(4η2 − 3η)ε◦
◦
h(z)e(z)ϕ 1

2
(z)◦

◦
− 16η − 3

2
ε◦
◦
(∂e(z))ϕ 1

2
(z)◦

◦

+ 2(32η2 − 12η + 3)ε2◦

◦
h(z)e(z)2ϕ 1

2
(z)◦

◦
− (128η2 − 24η − 3)ε2◦

◦
(∂e(z))e(z)ϕ 1

2
(z)◦

◦

+
4096η3 − 1536η2 + 192η + 9

2
ε3◦

◦
(∂e(z))e(z)2ϕ 1

2
(z)◦

◦
.

Here we have

(11)

T
(1)
3|8 (z) + T

(2)
3|8 (z) = TUrod

∣∣∣∣ε1→2(64η2−16η+3)ε2

ε2→(1−8η)ε

G
(1)
3|8(z) +G

(2)
3|8(z) = GUrod

∣∣∣∣ε1→2(64η2−16η+3)ε2

ε2→(1−8η)ε

.

Theorem 3.3. As N = 1 vertex operator superalgebras, we have

UN=1 = Lns

(
−21

4
, 0

)⊗2

⊕ Lns

(
−21

4
,−1

4

)⊗2

.

Proof. From the discussion above and relations (11) we know that there are two commuting copies
of the N = 1 superconformal algebra of central charge − 21

4 . So we only have to rule out that one

of the copies is Vns(− 21
4 , 0). But this easily follows from the previous observation of the asymptotic

growth of characters involved. The rest follows using the rationality of Lns(− 21
4 , 0) [1] and known

character formulas for irreducible modules (see Section 2). �

Comparing characters on both sides of Theorem 3.3, after multiplying with q
1
2 , gives the following

identity which can be also proven directly using q-series.
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Corollary 3.4.

(−q1/2; q)3∞ =
1∏

n≥1;n 6≡0,±2,±3(mod 8)(1− qn/2)2
+ q

1
2

1∏
n≥1;n 6≡0,±1,±2(mod 8)(1− qn/2)2

.

3.4. (Super)conformal embedding (c1, c2) = (−11, 12 ). There is a Virasoro field with central

charge 1
2 given by

(12)
T3|4(z) =

1

4
◦

◦
e(z)f(z)◦

◦
− 1

16
◦

◦
h(z)2◦

◦
− 1

8
∂h(z) + ε◦

◦
h(z)2e(z)◦

◦
− ε◦

◦
h(z)∂e(z)◦

◦
− ε◦

◦
(∂h(z))e(z)◦

◦

− 4ε2◦

◦
(∂e(z))2◦

◦
+ 6ε2◦

◦
(∂h(z))e(z)2◦

◦
− 4ε2◦

◦
(∂2e(z))e(z)◦

◦
,

and a commuting copy of the N = 1 superconformal algebra with

(13)
T (z) =

1

8
◦

◦
h(z)2◦

◦
+

1

2
∂h(z) + ε◦

◦
h(z)2e(z)◦

◦
− ε◦

◦
h(z)∂e(z)◦

◦
+ ε◦

◦
(∂h(z))e(z)◦

◦
− 2ε∂2e(z)

− 6ε2◦

◦
(∂h(z))e(z)2◦

◦
+ η◦

◦
(∂e(z))2◦

◦
+ η◦

◦
(∂2e(z))e(z)◦

◦
,

and

(14)

G(z) =− 1

2
√
η − 12ε2

ϕ 3
2
(z)− 2ε√

η − 12ε2
◦

◦
e(z)ϕ 3

2
(z)◦

◦
− 2ε√

η − 12ε2
◦

◦
h(z)ϕ 1

2
(z)◦

◦

− 2(18ε2 − η)√
9η − 108ε2

◦

◦
(∂h(z))ϕ− 1

2
(z)◦

◦
− 108ε2 − 7η

6
√
η − 12ε2

◦

◦
h(z)e(z)ϕ 1

2
(z)◦

◦
+

4(ε3 − εη)√
η − 12ε2

◦

◦
(∂e(z))e(z)ϕ 1

2
(z)◦

◦

− 720ε4 − 216ε2η + 13η2

6
√
η − 12ε2

◦

◦
(∂e(z))2ϕ− 1

2
(z)◦

◦
.

Here we have

T3|4(z) + T (z) = TUrod(z)

∣∣∣∣
ε1→−4ε2+η

ε2→−2ε

.

Then using the same argument as in the proof of Theorem 3.3.

Proposition 3.5. As an Lns (−11, 0)⊗ L
(
1
2 , 0
)
-module

UN=1 = Lns (−11, 0)⊗ L

(
1

2
, 0

)
⊕ Lns(−11, 0)⊗ L

(
1

2
,
1

2

)

⊕ Lns

(
−11,−1

2

)
⊗ L

(
1

2
, 0

)
⊕ Lns

(
−11,−1

2

)
⊗ L

(
1

2
,
1

2

)
.

Using L
(
1
2 , 0
)
⊕ L

(
1
2 ,

1
2

)
= 〈ϕ 1

2
(z)〉 = F we get the commutant

Com(F ,F⊗3

) = Lns(−11, 0)⊕ Lns(−11,−1

2
)

and therefore

UN=1 =

(
Lns(−11, 0)⊕ Lns(−11,−1

2
)

)
⊗F .

As a conclusion we observe:
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Proposition 3.6. The two fermion vertex superalgebra F⊗2 admits an N = 1 conformal structure
of central charge c = −11 such that

ch[F⊗2](q) = q−1/2(−q1/2; q)2∞.

Explicitly, inside of F⊗2 =
〈
ϕ− 1

2
(z), ϕ 3

2
(z)
〉
, we have

T (z) =
1

4
◦

◦
ϕ− 1

2
(z)∂ϕ 3

2
(z)◦

◦
+
3

2
◦

◦
(∂ϕ− 1

2
(z))ϕ 3

2
(z)◦

◦
−ε

2

2
◦

◦
(∂2ϕ− 1

2
(z))∂ϕ− 1

2
(z)◦

◦
−ε

2

2
◦

◦
(∂3ϕ− 1

2
(z))ϕ− 1

2
(z)◦

◦

and

G(z) = − 1

2ε
ϕ 3

2
(z) +

ε

2
◦

◦
(∂ϕ− 1

2
)ϕ− 1

2
(z)ϕ 3

2
(z)◦

◦
+

13ε3

12
◦

◦
(∂2ϕ− 1

2
)(∂ϕ− 1

2
(z))ϕ− 1

2
(z)◦

◦
+

11ε

6
∂2ϕ− 1

2
(z).

3.5. (Super)conformal embedding (c1, c2) = (− 11
14 ,

−68
7 ). Next result will be proven in a more

conceptual way later on so now we only state the result and observe that we can again use Theorem
3.3.

Proposition 3.7. As an SV ir−11/14 × V ir−68/7-module:

UN=1 = Lns(−11/14, 0)⊗ L(−68/7, 0)⊕
⊕ Lns(−11/14,−1/14)⊗ L(−68/7,−3/7)⊕ Lns(−11/14, 2/7)⊗ L(−68/7,−2/7).

Since − 11
14 is from the minimal series of central charge for the Virasoro algebra, we also get

V ir−11/14 × V ir−68/7 decomposition (this decomposition was also mentioned in [4]) of UN=1 using

Lns(−11/14, 0) = L(−11/14, 0)⊕ L(−11/4, 3/2)⊕ L(−11/14, 4)⊕ L(−11/14, 25/2)

Lns(−11/14,−1/14) = L(−11/14,−1/14)⊕ L(−11/4, 3/7)⊕ L(−11/14, 17/7)⊕ L(−11/14, 69/14)

Lns(−11/14, 2/7) = L(−11/14, 2/7)⊕ L(−11/4, 11/14)⊕ L(−11/14, 25/14)⊕ L(−11/14, 58/7).

Next we give explicit conformal and superconformal vectors in this case. The Virasoro field with
central charge − 68

7 is given by

(15)

T2|7(z) =− 1

14ε
f(z) +

1− 4η

4
◦

◦
e(z)f(z)◦

◦
+

28η − 3

56
◦

◦
h(z)2◦

◦
+

28η + 3

28
∂h(z)

+
1

32
(4η − 1)(84η − 5)ε◦

◦
h(z)2e(z)◦

◦
+

1

16
(4η − 1)(28η + 5)ε◦

◦
(∂h(z))e(z)◦

◦

− 1

56
(28η − 11)(28η − 1)ε◦

◦
h(z)∂e(z)◦

◦
+− 3

14
(28η − 11)ε∂2e(z)

+
2

343

(
21952η3 + 8624η2 − 15148η + 2137

)
ε2◦

◦
(∂e(z))2◦

◦

+
2

343

(
21952η3 + 8624η2 − 13804η + 1609

)
ε2◦

◦
(∂2e(z))e(z)◦

◦

+− 3

343
(28η − 11)(28η − 3)(28η + 1)ε2◦

◦
(∂h(z))e(z)2◦

◦

+− 384

2401

(
784η2 − 616η + 69

)
ε3◦

◦
(∂2e(z))e(z)2◦

◦
,
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and the N = 1 superconformal algebra with central charge − 11
14 is generated by

(16)

T7|12(z) =
1

14ε
f(z) + η◦

◦
e(z)f(z)◦

◦
+

1

112
(13− 56η)◦

◦
h(z)2◦

◦
+

1

56
(15− 56η)∂h(z)

− 1

28
(4η − 1)(84η − 5)ε◦

◦
h(z)2e(z)◦

◦
− 1

14
(4η − 1)(28η + 5)ε◦

◦
(∂h(z))e(z)◦

◦

+
1

49
(28η − 11)(28η − 1)ε◦

◦
h(z)∂e(z)◦

◦
− 2

49
(28η − 11)ε∂2e(z)

− 2

343
(28η + 1)

(
784η2 − 504η + 93

)
ε2◦

◦
(∂e(z))2◦

◦

− 2

343

(
21952η3 − 13328η2 + 3444η − 435

)
ε2ε2◦

◦
(∂2e(z))e(z)◦

◦

+
3

343
(28η − 11)(28η − 3)(28η + 1)ε2ε2◦

◦
(∂h(z))e(z)2◦

◦

+
384

2401

(
784η2 − 616η + 69

)
ε3◦

◦
(∂2e(z))e(z)2◦

◦
,

and
(17)

G7|12(z) =
1

2ε
√
21
ϕ 3

2
− 28η + 1

4
√
21

◦

◦
f(z)ϕ− 1

2
(z)◦

◦
− 1

4

√
7

3
(4η + 1)◦

◦
h(z)ϕ 1

2
(z)◦

◦

+
1

16

√
7

3
(4η − 1)(28η + 9)ε◦

◦
h(z)e(z)ϕ 1

2
(z)◦

◦
+

1

8

√
3

7
(28η − 3)2ε2◦

◦
h(z)e(z)2ϕ 1

2
(z)◦

◦

+
1

16

√
7

3
(4η − 1)(28η − 3)ε◦

◦
(∂h(z))ϕ− 1

2
(z)◦

◦
+

1

2

√
3

7
(28η − 3)ε◦

◦
(∂e(z))ϕ 1

2
(z)◦

◦

− 1

4

√
3

7

(
784η2 − 280η + 37

)
ε2◦

◦
(∂e(z))e(z)ϕ 1

2
(z)◦

◦

+
1

8

√
21
(
3136η3 − 1456η2 + 332η − 25

)
ε3◦

◦
(∂e(z))e(z)2ϕ 1

2
(z)◦

◦

Here we note that

T2|7(z) + T7|12(z) = TUrod(z)

∣∣∣∣ε1→ 1
8 (784η

2−616η+73)ε2

ε2→− 1
4 (28η−11)ε

.

4. Level two Urod algebra and decompositions

4.1. Drinfeld-Sokolov reduction. In this part we closely follow [3] and [4]. For k 6= −2, let
HDS denotes the Drinfeld-Sokolov reduction functor from the catetegory of Vsl2(k, 0)-modules to

the category of V (ck, 0)-modules where ck = 1 − 6(k+1)2

k+2 . Also, denote by H∆
DS the diagonal

Drinfeld-Sokolov reduction as discussed in [3, 4].
First we assume that k is generic. Then Lsl2(k, nω1), n ≥ 0, are irreducible Lsl2(k, 0)-modules,

so called Weyl modules. Then

H0
DS(Lsl2(k, nω1)) = L(ck, h1,n+1)

and Hi
DS(Lsl2(k, nω1)) = 0, i ≥ 1.
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For admissible levels k ∈ −2 + Q>0 [12], we have

H0
DS

(
Lsl2

(
−2 +

p

p′
, ((m− 1)− (k + 2)(m′ − 1))ω1

))
= L(cp/p′ , hm,m′),

where as before 0 < m < p and 0 < m′ < p′.
In [4, 3] a result on decomposition of the ` = 1 level Urod algebra U = Lsl2(1, 0), of central

charge c = −5, tensored with a generic Virasoro algebra V (c, 0) is given. In other words, the vertex
algebra

V (ct, 0)⊗ U
is decomposed as a V (c1+t, 0)⊗ V (c1+1/t, 0)-module. This requires a decomposition of the sum of
two conformal vectors:

Tct + TUrod = Tc1+t
+ Tc1+1/t

where Tc1+t
and Tc1+1/t

commute with each other. Explicit formulas for these conformal vectors
appearing on the right-hand side were presented in loc.cit.

A generalization and conceptual explanation of this result for any semi-simple Lie algebra g is
given in [3] among other things. In particular, if g is simply laced, then the commuting pair of
Virasoro algebra is replaced with a commuting pair of principal affine simple W -algebra Wk(g) ⊗
W`(g) for certain k and `; for a precise statement [3, Section 8].

4.2. Adding a super structure. Our first result is essentially from [3]:

Theorem 4.1 (ACF). Let UN=1 be equipped with a conformal Urod structure with ` = 2 for sl2 as
in [3], then we have an isomorphism of vertex superalgebras 3

H∆
DS(Lsl2(k, 0)⊗ UN=1) = L(ck, 0)⊗ UN=1.

Moreover, for any Lsl2(k, 0)-module M , we have

H∆
DS(M ⊗ UN=1) = H0

DS(M)⊗ UN=1.

Proof. We only have to observe that UN=1 = Lsl2(2, 0) ⊕ Lsl2(2, 2ω1) has a vertex superalgebra
structure and that HDS commutes with direct sums. �

Next we exhibit two special cases: generic and admissible level k.

4.3. Generic case. Let L(ct, 0) be a generic vertex algebra then we have the following decompo-
sition in parallel with [4].

Theorem 4.2. Let L(ct, 0) be generic and UN=1 equipped with the Urod structure as in [3]. Then
we have a super conformal embedding

(18) L(c2+t, 0)⊗ Lns(c1+ 2
t
, 0) ↪→ L(ct, 0)⊗ UN=1.

Moreover, we have a character identity:

ch[L(ct, 0)⊗ UN=1](q) =
∑

n≥1
n≡1 mod 2

ch[L(c2+t, h1,n)](q) · ch[Lns(c1+ 2
t
, h1,n)](q).

3This is not an isomorphism of N = 1 vertex superalgebras as superconformal vectors on two sides are different.
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Proof. We first require a decomposition of

TV ir
ct + TUrod = TV ir

c2+t
+ TNS

c1+2/t
,

inside the tensor product of L(ct, 0)⊗UN=1 where TNS
c1+2/t

is a conformal vector that combines into

the N = 1 superconformal algebra with the same central charge. This was achieved using explicit
computations in Section 9. Additionally, the main result of Section 5 shows that a specialization of
the Urod family of conformal vectors of UN=1 constructed earlier coincides with the level 2 Urod
conformal vector constructed in [3]; see our formula (23).

For the character identity we only have to recall Propositions 2.1 and 2.2, and an easy q-series
identity ∑

n≥0

qn
2/2−n

(
1− q(2n+1)/2)(1− q2n+1)

)
= (1− q)(−q1/2; q)2∞(q; q)∞,

which follows directly from the Jacobi triple product identity (−q1/2; q)2∞(q; q)∞ =
∑

n∈Z
qn

2/2. �

Remark 4.3. Theorem 4.2 clearly suggests a decomposition

L(ct, 0)⊗ UN=1 =
∑

n≥1
n≡1 mod 2

L(c2+t, h1,n)⊗ Lns(c1+ 2
t
, h1,n).

This follows using Theorem 4.1 together with an isomorphism of SV ir × ŝl2-modules:

(19) Lsl2(k, 0)⊗ UN=1 =
⊕

n≡1 mod 2

Lns(c1+2/t, h1,n)⊗ Lsl2(k + 2, nω1),

However, (19) is somewhat difficult to prove just by relying on the methods discussed in this paper.
In addition to semisimplicity of the relevant category of Vsl2(k, 0)-modules (which is known), we
also require a delicate argument that each Lsl2(k + 2, nω1) appears in the decomposition with the
required q-multiplicity. Finally, we require a q-series identity:

∑

n≥0

qn
2/2(x−n + · · ·+ 1 + · · ·+ xn)

(
1− q(2n+1)/2

)
= (q; q)∞(−q1/2x; q)∞(−q1/2x−1; q)∞,

another easy consequence of the (x, q)-Jacobi triple product identity

(q; q)∞(−q1/2x; q)∞(−q1/2x−1; q)∞ =
∑

n∈Z

xnqn
2/2.

4.4. Admissible level. For admissible levels we have:

Theorem 4.4. Let (p, p′) be such that gcd(p, p′) = 1 and p, p′ ≥ 2. Then we have the following
decomposition as a V ircp′,2p′+p

× SV irp,2p′+p-module:

L(cp/p′ , 0)⊗ UN=1 =

2p′+p−1∑

n≥1
n≡1 mod 2

L(cp′/(2p′+p), h1,n)⊗ Lns(cp/(2p′+p), h1,n).

Proof. This follows from H∆
DS(Lsl2(−k+ p

p′ , 0)⊗UN=1) ∼= HDS(Lsl2(−k+ p
p′ , 0))⊗UN=1 combined

with the decomposition formula:

Lsl2(−2 +
p

p′
, 0)⊗ (Lsl2(2, 0)⊕ Lsl2(2, ω1)) =

⊕

0<i<2p′+p
i=1 mod 2

Lns(cp/(2p′+p), h1,i)⊗ Lsl2(
p

p′
, (i− 1)ω1),
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and more generally,

Lsl2

(
−2 +

p

p′
, ((m− 1)− (k + 2)(m′ − 1))ω1

)
⊗ (Lsl2(2, 0)⊕ Lsl2(2Λ1))

=
⊕

0<i<2p′+p
i=m′ mod 2

Lns(cp/(2p′+p), hm,i)⊗ Lsl2

(
p

p′
, (i− 1− (k + 2)(m′ − 1))ω1

)

given in [13] (see also [1]). An application of Theorem 4.1 now gives

L(ct, hm,m′)⊗ UN=1 =
⊕

0<i<2p′+p
i=m′ mod 2

Lns(cp/(2p′+p), hm,i)⊗H0
DS(Lsl2(

p

p′
, (i− 1− (k + 2)(m′ − 1))ω1))

(20)

=
⊕

0<i<2p′+p
i=m′ mod 2

Lns(cp/(2p′+p), hm,i)⊗ L(c(2p′+p)/p′ , hi,m′).

Setting (m,m′) = (1, 1) now gives the formula. �

4.5. Super extensions. The present setup does not give rise to decomposition formulas for the
tensor product Lns(cr,s, 0) ⊗ UN=1. However, when we have conformal embedding L(cp,p′ , 0) ↪→
Lns(cr,s, 0); in other words when the central charge belongs to both minimal series for V ir and
SV ir we can get such decomposition using Theorem 4.4 and formula (20). There are precisely
three such embeddings with central charges: cp,p′ = 7

10 ,− 21
4 , and − 11

14 (there is also cp,p′ = 0 but
then the simple vertex algebra is trivial).

We start from c = c4,5 = 7
10 . Then Lns(

7
10 , 0) = L(c4,5, h1,1)⊕ L(c4,5, h1,4). Using the formulas

above we get

L(c4,5, h1,1)⊗ UN=1 =

13⊕

i≡1 mod 2

Lns(c4,14, h1,i)⊗ L(c5,14, h1,i),

L(c4,5, h1,4)⊗ UN=1 =
13⊕

i≡1 mod 2

Lns(c4,14, h1,i)⊗ L(c5,14, h4,i).

Combining these isomorphisms gives

Lns(
7

10
, 0)⊗ UN=1 =

13⊕

i≡1 mod 2

Lns(c4,14, h1,i)⊗ (L(c5,14, h1,i)⊕ L(c5,14, h4,i)),

and therefore the coset superalgebra of Lns(c4,14, 0) is vertex superalgebra L(c5,14, h1,1)⊕L(c5,14, h4,1),
of type (2, 9).

Next example is c = c3,8 = − 21
4 , where Lns(− 21

4 , 0) = L(c3,8, 0) ⊕ L(c3,8, h1,7). Similar compu-
tation as above gives an isomorphism:

Lns(−
21

4
, 0)⊗ UN=1 =

17∑

i≡1 mod 2

Lns(c3,19, h1,i)⊗ (L(c8,19, h1,i)⊕ L(c8,19, h7,i)).

Thus, the coset subalgebra of Lns(c3,19, 0) is isomorphic to L(c8,19, h1,1) ⊕ L(c8,19, h7,1), a vertex
superalgebra of type (2, 512 ).
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Finally, using decomposition formulas in Section 2.5, we get

Lns

(
−11

14
, 0

)
⊗ UN=1

decomposing as an Lns(c7,31, 0) ⊗ W-module, where W is vertex superalgebra with Virasoro de-
composition:

W = L(c12,31, 0)⊕ L(c12,31,
27

2
)⊕ L(c12,31, 28)⊕ L(c12,31,

145

2
).

In particular, the even subalgebra Wev is a W -algebra of type (2, 28), which seems to be new.

5. Computation of level 2 Urod vector

In this part we mainly follow [3] but we make everything slightly more explicit for the sake of
computation.

5.1. Automorphism. We first recall some basic linear algebra facts discussed Section 2 of [3]. Let
A be a semi-simple linear operator acting on the vertex algebra V such that V =

⊕
m≥0 Vm, where

Vm is the finite-dimensional eigenspace for A corresponding to eigenvalue m ∈ Spec(A). Suppose
that E is a locally finite operator on V , that is for every v ∈ V , the space p(E) · v spans a finite-

dimensional subspace of V (here p runs through the set of polynomials). Define Â = A+ E. Next
result is just a slightly more explicit version of what was discussed in loc.cit.

Proposition 5.1. Let E be a graded linear map of degree k, that is E : Vm → Vm+k and E is

of nilpotence index Nm
4 when restricted to Vm and k ≥ 1. Let Bm be a basis Vm. Then Â is

diagonalizable on V and

B̃m = {ṽ := v +

Nm−1∑

i=1

(−1)i
1

kii!
Eiv. : v ∈ Bm}

is a basis of eigenvectors with eigenvalue m under Â and V =
⊕

m≥0 Ṽm, where Ṽm = Span(B̃)

In particular, if E is of degree 2, then

(21) B̃m = {ṽ := v +

Nm−1∑

i=1

(−1)i
1

(2i)!!
Eiv. : v ∈ Bm}.

Going through each eigenspace Vm this way we obtain a linear isomorphism

v → ṽ ∈ Ṽm.

It is not hard to see [3] that this isomorphism is a vertex algebra automorphism.
Unfortunately, construction of the Urod conformal vector given in [3] is quite non-explicit

so we have to dig deeper into the main construction. Following [3], we let C = Vsl2(k, 0) ⊗
Lsl2(`, 0) ⊗ Λ∞/2+∗(n), where Λ∞/2+∗(n) is generated by odd fields ψ and ψ∗. Letting Â(z) =
h2(z) + s2Jh1(z)e2(z), yields

Â(0) = (h2)(0)︸ ︷︷ ︸
:=A

+(t2Jh1(z)e2(z))(0)︸ ︷︷ ︸
:=E

4Observe that the local finiteness condition implies that E must be locally nilpotent.
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where Jh1(z) = h1(z)+2◦

◦
ψ(z)ψ∗(z)◦

◦
, and operator E is locally nilpotent with k = 2 (see Proposition

5.1), with respect to the (h2)(0) grading. Using formula (21) we get a desired isomorphism v → ṽ =
ϕs(v). In particular, in our setting with ` = 2, we have
(22)

e1(z) 7→◦

◦
e1(z)(1− s2e2(z) +

1

2
s4e2(z)

2)◦
◦

h1(z) 7→h1(z)− ks2∂e2(z)

f1(z) 7→◦

◦
f1(z)(1 + s2e2(z) +

1

2
s4e2(z)

2)◦
◦

e2(z) 7→e2(z)

h2(z) 7→h2(z) + s2◦

◦
Jh1(z)e2(z)

◦

◦
− k + 2

2
s4◦

◦
(∂e2(z))e2(z)

◦

◦

f2(z) 7→f2(z)−
1

2
s2(◦

◦
Jh1(z)h2(z)

◦

◦
+ 2∂Jh1(z)) +

1

4
s4(−◦

◦
Jh1(z)2e2(z)

◦

◦
+ (k + 2)◦

◦
h2(z)∂e2(z)

◦

◦

+ (k + 2)∂2e2(z))−
1

4
(k + 2)s6◦

◦
(∂e2(z))e2(z)J

h1(z)◦
◦
− 1

32
(k + 2)2s8◦

◦
(∂2e2(z))e2(z)

2◦

◦

ψ(z) 7→◦

◦
ψ(z)(1− s2e2(z) +

1

2
s4e2(z)

2)◦
◦

ψ∗(z) 7→◦

◦
ψ∗(z)(1 + s2e2(z) +

1

2
s4e2(z)

2)◦
◦
.

Equipped with this isomorphism we proceed as in loc.cit. The total Virasoro field for H∆
DS(Lk(sl2)⊗

Lsl2(2, 0)) is given by

Ttotal =
1

8

(
◦

◦
e2(z)f2(z)

◦

◦
+ ◦

◦
f2(z)e2(z)

◦

◦
+

1

2
◦

◦
h2(z)

2◦

◦

)
+

1

2k + 4

(
◦

◦
e1(z)f1(z)

◦

◦
+ ◦

◦
f1(z)e1(z)

◦

◦
+

1

2
◦

◦
h1(z)

2◦

◦

)

+ ◦

◦
(∂ψ(z))ψ∗(z)◦

◦
+

1

2
∂h1(z) +

1

2
∂h2(z)

,

and the Virasoro field for Wk(sl2) is

TDS(z) =
1

k + 2

(
−Jf1(z) +

1

4
◦

◦
Jh1(z)2◦

◦
+
k + 1

2
∂Jh1(z)

)
.

Finally, the ` = 2 Urod conformal vector is given by ϕ−1
s (Ttotal(z))−TDS(z). Explicit computation

shows that we have

(23) ϕ−1
s (Ttotal(z))− TDS(z) = TUrod(z)

∣∣∣∣ ε1→0

ε2→
s2(k+1)

2

,

where TUrod is as in Section 3. Thus we have proved that our family of conformal Urod structures,
as a special case, contains the ` = 2 Urod conformal vector constructed in [3].

6. Four fermion decomposition

In parallel with Section 3.3, where we investigated specific vertex superalgebras, we can now

address the four-fermion model F⊗4

= F ⊗ UN=1, using that F = L(c3,4, 0) ⊕ L(c3,4,
1
2 ). The

overall central charge is c = − 21
2 + 1

2 = −10. Using (20), we get two decompositions:
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L(c3,4, 0)⊗F⊗3

=
9∑

i=1 mod 2

Lns(c3,11, h1,i)⊗ L(c4,11, h1,i)

and

L(c3,4,
1

2
)⊗F⊗3

=

9∑

i=1 mod 2

Lns(c3,11, h1,i)⊗ L(c4,11, h3,i).

Combining these yields

F⊗4

=

9⊕

i=1 mod 2

Lns(c3,11, h1,i)⊗ (L(c4,11, h1,i)⊕ L(c4,11, h3,i)).

Observe that the coset with respect to SV irc3,11 of F⊗4

is isomorphic to

L(c4,11, h1,1)⊕ L(c4,11, h3,1) = L(c4,11, 0)⊕ L

(
c4,11,

9

2

)
,

which is a vertex operator superalgebra of type (2, 92 ).
Four-fermion model can be also accessed from a different perspective because it belongs to the

D-series due to so(4) ∼= sl2 ⊕ sl2. Again the central charge is c = −10 and this exactly matches
cUrod,so(4) given in Section 7.. More precisely, we have an isomorphism

F⊗4

= Lsl2(1, 0)
⊗2 ⊕ Lsl2(1, ω1)

⊗2

,

with respect to the standard grading, and thus

F⊗4

= U⊗2 ⊕ Lsl2(1, ω1)
⊗2

.

where U is the c = −5 Urod algebra of sl2 constructed in [4].

7. Five-fermion model and so(5)

Here we have F⊗5

= Lso(5)(1, 0)⊕ Lso(5)(1, ω1), or we can use sp(4) ∼= so(5). Using [3, formula
(33)] we found that the Urod central charge of so(5) is given by:

cUrod,so(5) = −10`(17 + 6`)

3 + `

so for ` = 1 we get cUrod,so(5) = − 115
2 . Narrowing down possible embeddings of rational W -

(super)algebras using central charges and asymptotic dimensions suggests the following:

Conjecture 7.1. Let c(k) be a central charge from the minimal series of Wk(so(5)). Also, let F⊗5

be equipped with an Urod conformal structure of level ` = 1. Then
(a) The only conformal embedding of

Wk1
(so5)⊗Wk2

(so5) ↪→ Lso(5)(1, 0) ↪→ F⊗5

occurs for c1(k1) = c2(k2) = − 115
4 and this embedding extends to a unique conformal embedding

Wk′
1
(osp(1|4))⊗Wk′

2
(osp(1|4)) ↪→ F⊗5

, again with c1(k
′
1) = c2(k

′
2) = − 115

4 .
(b) The only embeddings of

Wk1(osp(1|4))×Wk2(so5) ↪→ F⊗5

occur for: c1(k1) = c2(k2) = − 115
4 , c1(k1) = −58, c2(k2) =

1
2 and c1(k1) = − 93

2 , c2(k2) = −11.
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8. General F⊗n

Moving to higher ranks, we are no longer able to provide a complete (conjectural) statements
as in Conjecture 7.1. Therefore, our focus shifts solely to decompositions directly associated with
Urod algebras.

8.1. Urod grading on F⊗n

. Let us first elucidate how the Urod grading on F⊗n

alters the
standard grading, where all fermions are assigned a degree of 1

2 . This aspect was also briefly
touched upon in the introduction, serving as motivation for Urod central charges of the orthogonal
series.

Recall that the affine vertex algebra of so(n), n > 3 at level 1 admits a fermionic construction
[7]; see also [14] and [2] for related results. For so(2n), Lso(2n)(1, 0) is realized as the even part of

Λ⊗2n

, where Λ⊗2n

is the infinite-wedge vertex algebra generated by n-pairs of charged free fermions
ψi(z), ψ

∗
i (z), 1 ≤ i ≤ n. Similarly, for so(2n+ 1), the even part of the vertex superalgebra

Λ⊗2n ⊗F ∼= F⊗2n+1

,

is isomorphic to Lso(2n+1)(1, 0), where F is as before a single neutral free fermion generated by
ϕ(z). Let us consider g = so(2n+ 1) here; arguments for so(2n) are very similar so we omit them.

The affine Lie algebra of so(2n + 1) is generated by the quadratic operators in the fields ψi(z),
ψ∗
j (z) and ϕ(z). The fields of the Chevalley generators of the Cartan algebra, h1(z),...,hn(z), are

represented using fields ◦

◦
ψi(z)ψ

∗
i (z)

◦

◦
, 1 ≤ i ≤ n−1 and 2◦

◦
ψn(z)ψ

∗
n(z)

◦

◦
. Let {e, f, h} be an sl2-triple

where f is the principal nilpotent element with

h =
n−1∑

i=1

(2n− i+ 1)ihi +
n(n+ 1)

2
hn.

Therefore, to compute the conformal weights of ψi(−1/2)1, ψ∗
j (−1/2)1, and ϕ(−1/2)1 with respect

to the Urod conformal vector, we have to compute their eigenvalues with respect to L(0)Sug−(x0)(0)
[3], where x0 = h

2 . Plugging the relevant quadratic fermionic generators into our formula for h(z),

together with L(0)Suga(−1/2)1 = 1
2a(−1/2)1, for a = ϕ, ψi, ψ

∗
i , yields that the (2n + 1) fermions

have the following conformal weights:
{
−2n− 1

2
,−2n− 3

2
, · · · ,−3

2
,−1

2
,
1

2
, · · · 2n+ 1

2

}
.

With these explicit shifts, we can now compute the character of F⊗2n+1

:

ch[F⊗2n+1

](q) =

2n∏

i=0

(−q−2n+1+2i
2 ; q)∞ = q−

∑n
i=1

i2

2 (−q1/2; q)2n+1
∞ ,

as we previously argued in the introduction.

8.2. F⊗2n+1

. Let us denote by cg the central charge of the principal affine W -algebra by Wk(g).
For orthogonal and symplectic series we have:

csp(2n) = −n(4n
2 + 4kn− 2k − 3)(2n(n+ k + 2) + k)

k + n+ 1
,

cosp(1|2n) = − (2n+ 1)(2(2n− 1)(k + n)− 1)(4n(k + n) + 1)

2(2k + 2n+ 1)
,
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cso(2n+1) = −n(4n
2 + 2k(n+ 1)− 3)(2n(2n+ k − 1) + k)

k + 2n− 1
,

cso(2n) = −n
(
2kn− 2k + 4n2 − 10n+ 5

) (
2kn− k + 4n2 − 8n+ 4

)

k + 2n− 2
.

The Feigin-Frenkel duality gives Wk(so(2n+1)) ∼= W−n−1+ 1
2(k+2n−1)

(sp2n), n ≥ 2 so we can consider

either algebra. A bit tedious computation using [3] shows that the central charge cUrod,g of the
level ` Urod vertex algebra L` = Lg(`, 0) is given by:

cUrod,so(2n+1) = −`n(2n+ 1)(4n2 + 2n− 3 + 2`(1 + n))

2n+ `− 1
,

cUrod,sp(2n) = −`n(2n+ 1)(4n2 + 2n− 3 + 2`(n− 1))

n+ `+ 1
,

cUrod,so(2n) = −`(2n
2 − n)((2n− 2)`+ 4n2 − 8n+ 3)

2n− 2 + `
.

In particular, these central charges are independent of the parameter k in [3, formula (33)]. Here,
in the computations, we have chosen the same x0 as in the definition of the principal W -algebra.

Using arguments from [3] and [5, Section 7] we see that the tensor product of affineW -superalgebras

W−(n+1/2)+ 2n+k−1
2(2k+n)

(osp(1|2n))⊗W−(2n−1)+ 2n−1
(2(1+n)(k+2n))

(so(2n+ 1))

conformally embeds into the vertex superalgebra

Wk(so(2n+ 1))⊗F⊗2n+1

,

where F⊗2n+1

is equipped with an Urod conformal structure. If we choose k = −(2n− 1) + 2n+1
2n+2 ,

which belong to the minimal series, we have Wk(so(2n+ 1)) ∼= C, and hence

Proposition 8.1. There is a conformal embedding:

W
−(n+ 1

2 )+
(n+1

2
)

3+4n

(osp(1|2n))⊗W−(2n−1)+ 2n−1
3+4n

(so(2n+ 1)) ↪→ F⊗2n+1

.

Next discussion does not seem to follow the setup of [3]. First we observe a result from [5, Section
7]:

Lemma 8.2. The rational vertex algebra W−(n+1)+ 1+2n
8n

(sp2n)
∼= W−(2n−1)+ 4n

1+2n
(so(2n + 1)), of

central charge 1
2cUrod,so(2n+1), is the even part of the affine vertex superalgebra W`(osp(1|2n)) with

` = −(n+ 1
2 ) +

2n−1
8n . Consequently, W`(osp(1|2n)) is rational.

Then our next conjecture can be viewed as a higher-rank generalization of Theorem 3.3:

Conjecture 8.3. (Square root 5 of F⊗2n+1

) There is a conformal embedding

W−(n+ 1
2 )+

2n−1
8n

(osp(1|2n))⊗2 ↪→ F⊗2n+1

.

5If V and W are rational, and W ⊗W conformally embedded in V , we say that W is a square root V .



FREE FERMIONS REVISITED 19

8.3. F⊗2n

. The case F⊗2n

is easier because this is a level 1 module for the simply-laced affine Lie

algebra of type D
(1)
n , n ≥ 2, so results from [3] are applicable. We use [7]

F⊗2n = Lso(2n)(1, 0)⊕ Lso(2n)(1, ω1),

so that F⊗2n can be equipped with an Urod structure. Using [3, Corollary 8.8] we get an embedding

W−(2n−2)+ 4n−3
2n−2

(so(2n))⊗W−(2n−2)+ 4n−3
2n−1

(so(2n)) ↪→ Lso(2n)(1, 0)

and similarly for Lso(2n)(1, ω1). However, theW -algebra modules that appear in the decomposition
of Lso(2n)(1, ω1) are different from those in Lso(2n)(1, 0) (see again [3, Corollary 8.8.2]) so this way
we do not obtain new super extensions of Wk(so(2n)).

9. Explicit formulas

In this section we give explicit formulas for commuting Virasoro and super-Virasoro generators
within V (ct, 0)⊗UN=1. In fact this is slightly more general than the setup of [3] because we provide
a two-parameter family of decompositions. Inside of V (ct, 0)⊗UN=1 we have commuting copies of
V ir2+t and SV ir1+ 2

t
generated by

TcVir
2+t

(z) =− 1

ε
f(z) + η◦

◦
e(z)f(z)◦

◦
− 4η + 2ηt− 1

4(t+ 2)
◦

◦
h(z)2◦

◦
− 4η + 2ηt− t− 1

2(t+ 2)
∂h(z)

+
η(6η + 3ηt− 2)

4(t+ 2)
ε◦
◦
h(z)2e(z)◦

◦
+
η(2η + ηt− t)

2(t+ 2)
ε◦
◦
(∂h(z))e(z)◦

◦

− 16η2 − 8η + 4η2t2 + 2ηt2 + 16η2t− t

4(t+ 2)2
ε◦
◦
h(z)∂e(z)◦

◦
+
t(8η + 4ηt+ 2t− 1)

4(t+ 2)2
ε∂2e(z)

+
−2η3(t+ 2)3 + 2η2(t+ 2)2(2t+ 1) + 2ηt(t+ 2)(2t− 1) + (2− 3t)t

4(t+ 2)3
ε2◦

◦
(∂2e(z))e(z)◦

◦

+
−2t2 − 2η3(t+ 2)3 + 2η2(t+ 2)2(2t+ 1) + ηt(t+ 2)(4t− 1) + t

4(t+ 2)3
ε2◦

◦
(∂e(z))2◦

◦

+
6η3(t+ 2)3 − 6η2(t+ 2)2 − ηt(t+ 2) + t

8(t+ 2)3
ε2◦

◦
(∂h(z))e(z)2◦

◦

+
t
(
−16η

(
t2 + t− 2

)
− 8η2(t+ 2)2 + 11t− 12

)

32(t+ 2)4
ε3◦

◦
(∂2e(z))e(z)2◦

◦

+
t

t+ 2
TcVir

t
(z)− t

(t+ 2)2
ε◦
◦
e(z)TcVir

t
(z)◦

◦
+
t− ηt(t+ 2)

(t+ 2)3
ε2◦

◦
e(z)2TcVir

t
(z)◦

◦
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TcN=1

1+ 2
t

(z) =
1

ε
f(z) +

1

4
(1− 4η)◦

◦
e(z)f(z)◦

◦
+

8η(t+ 2) + t− 2

16(t+ 2)
◦

◦
h(z)2◦

◦
+

16η + 8ηt− t+ 2

8(t+ 2)
∂h(z)

+
η(2− 3η(t+ 2))

4(t+ 2)
ε◦
◦
h(z)2e(z)◦

◦
+
η(t− η(t+ 2))

2(t+ 2)
ε◦
◦
(∂h(z))e(z)◦

◦

+
16η2 − 8η + 4η2t2 + 2ηt2 + 16η2t− t

4(t+ 2)2
ε◦
◦
h(z)∂e(z)◦

◦
+

8η + t(3− 2ηt)− 4

4(t+ 2)2
ε∂2e(z)

+
2η3(t+ 2)3 − 2η2(t− 1)(t+ 2)2 + 2η(t+ 2)(3t− 4) + (t− 2)2

4(t+ 2)3
ε2◦

◦
(∂2e(z))e(z)◦

◦

+
(η(t+ 2)− 1)

(
−2η

(
t2 − 4

)
+ 2η2(t+ 2)2 + 3t− 4

)

4(t+ 2)3
ε2◦

◦
(∂e(z))2◦

◦

+
−6η3(t+ 2)3 + 6η2(t+ 2)2 + ηt(t+ 2)− t

8(t+ 2)3
ε2◦

◦
(∂h(z))e(z)2◦

◦

+
t
(
16η

(
t2 + t− 2

)
+ 8η2(t+ 2)2 − 11t+ 12

)

32(t+ 2)4
ε3◦

◦
(∂2e(z))e(z)2◦

◦

+
2

t+ 2
TcVir

t
(z) +

t

(t+ 2)2
ε◦
◦
e(z)TcVir

t
(z)◦

◦
+
t(η(t+ 2)− 1)

(t+ 2)3
ε2◦

◦
e(z)2TcVir

t
(z)◦

◦

GcN=1

1+ 2
t

(z) =
ηε(η(t+ 2) + t− 2)

2
√
t(t+ 2)

◦

◦
(∂h(z))ϕ− 1

2
(z)◦

◦

−
√
t(t+ 2)ε2

(
2η2(t+ 2)2 − η(t+ 2) + t− 1

)

4(t+ 2)3
◦

◦
e(z)2f(z)ϕ− 1

2
(z)◦

◦

− 2η(t+ 2) + t− 2

2
√
t(t+ 2)

◦

◦
h(z)ϕ 1

2
(z)◦

◦
+
ηε(η(t+ 2)− 2)

2
√
t(t+ 2)

◦

◦
h(z)e(z)ϕ 1

2
(z)◦

◦

+

√
t(t+ 2)ε2(η(t+ 2)(4η(t+ 2)− 3) + 1)

4(t+ 2)3
◦

◦
h(z)e(z)2ϕ 1

2
(z)◦

◦

+
t2ε(1− 2η(t+ 2))

2(t(t+ 2))3/2
◦

◦
(∂e(z))ϕ 1

2
(z)◦

◦

−
√
t(t+ 2)ε3

(
16η3(t+ 2)3 − 16η2(t+ 2)2 + 8ηt(t+ 2)− 5t+ 4

)

16(t+ 2)4
◦

◦
(∂e(z))e(z)2ϕ 1

2
(z)◦

◦

+
1− η(t+ 2)√

t(t+ 2)
◦

◦
e(z)ϕ 3

2
(z)◦

◦
+

√
t(t+ 2)

tε
ϕ 3

2
(z) +

t2ε

(t(t+ 2))3/2
◦

◦
T (z)ϕ− 1

2
(z)◦

◦

Here we have

TcVir
2+t

(z) + TcN=1

1+ 2
t

(z) = Tct(z) + TUrod(z)

∣∣∣∣
ε1→

ε2(2η(t2+t−2)+η2(t+2)2−t+1)
2(t+2)2

ε2→
ε(η(t+2)+t−1)

2(t+2)

.
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10. Future work

Based on the ideas and results in our paper (and of course [3]), there are several future avenues
for exploration.

(Twisted modules) Clearly, we can modify many results here and in [3] for twisted modules with
respect to the parity operators σ. In particular, all results for UN=1 in Section 3 have a version where
the Neveu-Schwarz algebra is replaced with the Ramond superconformal algebra. For example, the

σ-twisted F⊗2

-module F⊗2

R admits an isomorphism

F⊗2

R
∼= LR

(
−11,−3

8

)
.

(Nilpotent elements) Another direction, motivated by [3], is to study different gradings and
decompositions on F⊗n

coming from non-principal nilpotent elements. As an example, here we
consider f = fsubreg (subregular) and f = fmin (minimal) nilpotent elements of so(5).

The Urod structure on the level ` ∈ N affine vertex algebra L` = Lso(5)(`, 0) has central charge

c = − 2`(13+6`)
3+` . Letting ` = 1, gives conformal vector TUrod,fsubreg

of central charge − 19
2 and

with respect to the degree operator fermionic generators receive conformal weights: − 1
2 ,

3
2 ,

1
2 ,

1
2 ,

1
2 .

Consequently,

chfsubreg
[F⊗5

](q) = q−1/2(−q1/2; q)5∞.
For f = fmin, the Urod affine vertex algebra L` = Lso(5)(`, 0) has central charge c = − 2`(4+3`)

3+` .

Similarly, letting ` = 1, gives central charge − 7
2 and fermionic generators have conformal weights:

0, 0, 1, 1, 12 , and therefore

chfmin
[F⊗5

](q) = 4(−q; q)4∞(−q1/2; q)∞.
Observe that in both cases q−c/24chf [·] are modular functions.
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